Results 1  10
of
144
Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure PublicKey Encryption
, 2001
"... We present several new and fairly practical publickey encryption schemes and prove them secure against adaptive chosen ciphertext attack. One scheme is based on Paillier's Decision Composite Residuosity (DCR) assumption [7], while another is based in the classical Quadratic Residuosity (QR) assu ..."
Abstract

Cited by 139 (7 self)
 Add to MetaCart
We present several new and fairly practical publickey encryption schemes and prove them secure against adaptive chosen ciphertext attack. One scheme is based on Paillier's Decision Composite Residuosity (DCR) assumption [7], while another is based in the classical Quadratic Residuosity (QR) assumption. The analysis is in the standard cryptographic model, i.e., the security of our schemes does not rely on the Random Oracle model. We also introduce the notion of a universal hash proof system. Essentially, this is a special kind of noninteractive zeroknowledge proof system for an NP language. We do not show that universal hash proof systems exist for all NP languages, but we do show how to construct very ecient universal hash proof systems for a general class of grouptheoretic language membership problems. Given an ecient universal hash proof system for a language with certain natural cryptographic indistinguishability properties, we show how to construct an ecient publickey encryption schemes secure against adaptive chosen ciphertext attack in the standard model. Our construction only uses the universal hash proof system as a primitive: no other primitives are required, although even more ecient encryption schemes can be obtained by using hash functions with appropriate collisionresistance properties. We show how to construct ecient universal hash proof systems for languages related to the DCR and QR assumptions. From these we get corresponding publickey encryption schemes that are secure under these assumptions. We also show that the CramerShoup encryption scheme (which up until now was the only practical encryption scheme that could be proved secure against adaptive chosen ciphertext attack under a reasonable assumption, namely, the Decision...
Sequences of Games: A Tool for Taming Complexity in Security Proofs
, 2004
"... This paper is brief tutorial on a technique for structuring security proofs as sequences games. ..."
Abstract

Cited by 114 (0 self)
 Add to MetaCart
This paper is brief tutorial on a technique for structuring security proofs as sequences games.
A Proposal for an ISO Standard for Public Key Encryption (version 2.0)
, 2001
"... This document should be viewed less as a first draft of a standard for publickey encryption, and more as a proposal for what such a draft standard should contain. It is hoped that this proposal will serve as a basis for discussion, from which a consensus for a standard may be formed. ..."
Abstract

Cited by 111 (3 self)
 Add to MetaCart
This document should be viewed less as a first draft of a standard for publickey encryption, and more as a proposal for what such a draft standard should contain. It is hoped that this proposal will serve as a basis for discussion, from which a consensus for a standard may be formed.
An Uninstantiable RandomOracleModel Scheme for a HybridEncryption Problem,” Full version of this paper. Available at http://wwwcse.ucsd.edu/users/mihir
"... Abstract. We present a simple, natural randomoracle (RO) model scheme, for a practical goal, that is uninstantiable, meaning is proven in the RO model to meet its goal yet admits no standardmodel instantiation that meets this goal. The goal in question is INDCCApreserving asymmetric encryption w ..."
Abstract

Cited by 78 (5 self)
 Add to MetaCart
Abstract. We present a simple, natural randomoracle (RO) model scheme, for a practical goal, that is uninstantiable, meaning is proven in the RO model to meet its goal yet admits no standardmodel instantiation that meets this goal. The goal in question is INDCCApreserving asymmetric encryption which formally captures security of the most common practical usage of asymmetric encryption, namely to transport a symmetric key in such a way that symmetric encryption under the latter remains secure. The scheme is an ElGamal variant, called Hash ElGamal, that resembles numerous existing ROmodel schemes, and on the surface shows no evidence of its anomalous properties. These results extend our understanding of the gap between the standard and RO models, and bring concerns raised by previous work closer to practice by indicating that the problem of ROmodel schemes admitting no secure instantiation can arise in domains where RO schemes are commonly designed. 1
Compact Proofs of Retrievability
, 2008
"... In a proofofretrievability system, a data storage center must prove to a verifier that he is actually storing all of a client’s data. The central challenge is to build systems that are both efficient and provably secure — that is, it should be possible to extract the client’s data from any prover ..."
Abstract

Cited by 72 (0 self)
 Add to MetaCart
In a proofofretrievability system, a data storage center must prove to a verifier that he is actually storing all of a client’s data. The central challenge is to build systems that are both efficient and provably secure — that is, it should be possible to extract the client’s data from any prover that passes a verification check. All previous provably secure solutions require that a prover send O(l) authenticator values (i.e., MACs or signatures) to verify a file, for a total of O(l 2) bits of communication, where l is the security parameter. The extra cost over the ideal O(l) communication can be prohibitive in systems where a verifier needs to check many files. We create the first compact and provably secure proof of retrievability systems. Our solutions allow for compact proofs with just one authenticator value — in practice this can lead to proofs with as little as 40 bytes of communication. We present two solutions with similar structure. The first one is privately verifiable and builds elegantly on pseudorandom functions (PRFs); the second allows for publicly verifiable proofs and is built from the signature scheme of Boneh, Lynn, and Shacham in bilinear groups. Both solutions rely on homomorphic properties to aggregate a proof into one small authenticator value. 1
Dynamic and efficient key management for access hierarchies
 In Proceedings of the ACM Conference on Computer and Communications Security
, 2005
"... Hierarchies arise in the context of access control whenever the user population can be modeled as a set of partially ordered classes (represented as a directed graph). A user with access privileges for a class obtains access to objects stored at that class and all descendant classes in the hierarchy ..."
Abstract

Cited by 64 (8 self)
 Add to MetaCart
Hierarchies arise in the context of access control whenever the user population can be modeled as a set of partially ordered classes (represented as a directed graph). A user with access privileges for a class obtains access to objects stored at that class and all descendant classes in the hierarchy. The problem of key management for such hierarchies then consists of assigning a key to each class in the hierarchy so that keys for descendant classes can be obtained via efficient key derivation. We propose a solution to this problem with the following properties: (1) the space complexity of the public information is the same as that of storing the hierarchy; (2) the private information at a class consists of a single key associated with that class; (3) updates (i.e., revocations and additions) are handled locally in the hierarchy; (4) the scheme is provably secure against collusion; and (5) each node can derive the key of any of its descendant with a number of symmetrickey operations bounded by the length of the path between the nodes. Whereas many previous schemes had some of these properties, ours is the first that satisfies all of them. The security of our scheme is based on pseudorandom functions, without reliance on the Random Oracle Model. 18 Portions of this work were supported by Grants IIS0325345 and CNS06274488 from the
TagKEM/DEM: a New Framework for Hybrid Encryption and a New Analysis of KurosawaDesmedt KEM
 in Proc. Eurocrypt
, 2005
"... Abstract This paper presents a novel framework for the generic construction of hybrid encryptionschemes which produces more efficient schemes than the ones known before. A previous ..."
Abstract

Cited by 55 (6 self)
 Add to MetaCart
Abstract This paper presents a novel framework for the generic construction of hybrid encryptionschemes which produces more efficient schemes than the ones known before. A previous
Chosenciphertext security from tagbased encryption
 In proceedings of TCC ’06, LNCS series
, 2006
"... One of the celebrated applications of IdentityBased Encryption (IBE) is the Canetti, Halevi, and Katz (CHK) transformation from any (selectiveidentity secure) IBE scheme into a full chosenciphertext secure encryption scheme. Since such IBE schemes in the standard model are known from previous wor ..."
Abstract

Cited by 52 (13 self)
 Add to MetaCart
One of the celebrated applications of IdentityBased Encryption (IBE) is the Canetti, Halevi, and Katz (CHK) transformation from any (selectiveidentity secure) IBE scheme into a full chosenciphertext secure encryption scheme. Since such IBE schemes in the standard model are known from previous work this immediately provides new chosenciphertext secure encryption schemes in the standard model. This paper revisits the notion of TagBased Encryption (TBE) and provides security definitions for the selectivetag case. Even though TBE schemes belong to a more general class of cryptographic schemes than IBE, we observe that (selectivetag secure) TBE is a sufficient primitive for the CHK transformation and therefore implies chosenciphertext secure encryption. We construct efficient and practical TBE schemes and give tight security reductions in the standard model from the Decisional Linear Assumption in gapgroups. In contrast to all known IBE schemes our TBE construction does not directly deploy pairings. Instantiating the CHK transformation with our TBE scheme results in an encryption scheme whose decryption can be carried out in one single multiexponentiation. Furthermore, we show how to apply the techniques gained from the TBE construction to directly design a new Key Encapsulation Mechanism. Since in this case we can avoid the CHK transformation the scheme results in improved efficiency. 1
PublicKey Cryptosystems Resilient to Key Leakage
"... Most of the work in the analysis of cryptographic schemes is concentrated in abstract adversarial models that do not capture sidechannel attacks. Such attacks exploit various forms of unintended information leakage, which is inherent to almost all physical implementations. Inspired by recent sidec ..."
Abstract

Cited by 51 (6 self)
 Add to MetaCart
Most of the work in the analysis of cryptographic schemes is concentrated in abstract adversarial models that do not capture sidechannel attacks. Such attacks exploit various forms of unintended information leakage, which is inherent to almost all physical implementations. Inspired by recent sidechannel attacks, especially the “cold boot attacks ” of Halderman et al. (USENIX Security ’08), Akavia, Goldwasser and Vaikuntanathan (TCC ’09) formalized a realistic framework for modeling the security of encryption schemes against a wide class of sidechannel attacks in which adversarially chosen functions of the secret key are leaked. In the setting of publickey encryption, Akavia et al. showed that Regev’s latticebased scheme (STOC ’05) is resilient to any leakage of
Simulationsound nizk proofs for a practical language and constant size group signatures, 2006. Full paper available at http://www.brics.dk/∼jg/NIZKGroupSignFull.pdf
"... Abstract. Noninteractive zeroknowledge proofs play an essential role in many cryptographic protocols. We suggest several NIZK proof systems based on prime order groups with a bilinear map. We obtain linear size proofs for relations among group elements without going through an expensive reduction ..."
Abstract

Cited by 45 (9 self)
 Add to MetaCart
Abstract. Noninteractive zeroknowledge proofs play an essential role in many cryptographic protocols. We suggest several NIZK proof systems based on prime order groups with a bilinear map. We obtain linear size proofs for relations among group elements without going through an expensive reduction to an NPcomplete language such as Circuit Satisfiability. Security of all our constructions is based on the decisional linear assumption. The NIZK proof system is quite general and has many applications such as digital signatures, verifiable encryption and group signatures. We focus on the latter and get the first group signature scheme satisfying the strong security definition of Bellare, Shi and Zhang [7] in the standard model without random oracles where each group signature consists only of a constant number of group elements. We also suggest a simulationsound NIZK proof of knowledge, which is much more efficient than previous constructions in the literature. Caveat: The constants are large, and therefore our schemes are not practical. Nonetheless, we find it very interesting for the first time to have NIZK proofs and group signatures that except for a constant factor are optimal without using the random oracle model to argue security.