Results 1 
6 of
6
On some exponential functionals of Brownian motion
 Adv. Appl. Prob
, 1992
"... Abstract: This is the second part of our survey on exponential functionals of Brownian motion. We focus on the applications of the results about the distributions of the exponential functionals, which have been discussed in the first part. Pricing formula for call options for the Asian options, expl ..."
Abstract

Cited by 98 (10 self)
 Add to MetaCart
Abstract: This is the second part of our survey on exponential functionals of Brownian motion. We focus on the applications of the results about the distributions of the exponential functionals, which have been discussed in the first part. Pricing formula for call options for the Asian options, explicit expressions for the heat kernels on hyperbolic spaces, diffusion processes in random environments and extensions of Lévy’s and Pitman’s theorems are discussed.
Pricing equity derivatives subject to bankruptcy
 Mathematical Finance
, 2006
"... We solve in closed form a parsimonious extension of the Black–Scholes–Merton model with bankruptcy where the hazard rate of bankruptcy is a negative power of the stock price. Combining a scale change and a measure change, the model dynamics is reduced to a linear stochastic differential equation who ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
We solve in closed form a parsimonious extension of the Black–Scholes–Merton model with bankruptcy where the hazard rate of bankruptcy is a negative power of the stock price. Combining a scale change and a measure change, the model dynamics is reduced to a linear stochastic differential equation whose solution is a diffusion process that plays a central role in the pricing of Asian options. The solution is in the form of a spectral expansion associated with the diffusion infinitesimal generator. The latter is closely related to the Schrödinger operator with Morse potential. Pricing formulas for both corporate bonds and stock options are obtained in closed form. Term credit spreads on corporate bonds and implied volatility skews of stock options are closely linked in this model, with parameters of the hazard rate specification controlling both the shape of the term structure of credit spreads and the slope of the implied volatility skew. Our analytical formulas are easy to implement and should prove useful to researchers and practitioners in corporate debt and equity derivatives markets.
On the integral of geometric Brownian motion
 Adv. Appl. Prob
, 2003
"... Abstract. This paper studies the law of any power of the integral of geometric Brownian motion over any finite time interval. As its main results, two integral representations for this law are derived. This is by enhancing the Laplace transform ansatz of [Y] with complex analytic methods, which is t ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Abstract. This paper studies the law of any power of the integral of geometric Brownian motion over any finite time interval. As its main results, two integral representations for this law are derived. This is by enhancing the Laplace transform ansatz of [Y] with complex analytic methods, which is the main methodological contribution of the paper. The one of our integrals has a similar structure to that obtained in [Y], while the other is in terms of Hermite functions as those of [Du01]. Performing or not performing a certain Girsanov transformation is identified as the source of these two forms of the laws. For exponents equal to 1 our results specialize to those obtained in [Y], but for exponents equal to minus 1 they give representations for the laws which are markedly different from those obtained in [Du01].
Limiting behaviors of the Brownian
, 901
"... Abstract: By adopting the upper half space realizations of the real, complex and quaternionic hyperbolic spaces and solving the corresponding stochastic differential equations, we can represent the Brownian motions on these classical families of the hyperbolic spaces as explicit Wiener functionals. ..."
Abstract
 Add to MetaCart
Abstract: By adopting the upper half space realizations of the real, complex and quaternionic hyperbolic spaces and solving the corresponding stochastic differential equations, we can represent the Brownian motions on these classical families of the hyperbolic spaces as explicit Wiener functionals. Using the representations, we show that the almost sure convergence of the Brownian motions and the central limit theorems for the radial components as time tends to infinity are easily obtained. We also give a straightforward strategy to obtain the explicit expressions for the Poisson kernels by combining the representations with some results on the distributions of the random variables which are defined by the perpetual (infinite) integrals of the usual geometric Brownian motions with negative drifts.
Limiting behaviors of the Brownian motions on
, 901
"... brownian motions on hyperbolic spaces 1 ..."