Results 1  10
of
283
On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and nperson games
 Artificial Intelligence
, 1995
"... The purpose of this paper is to study the fundamental mechanism humans use in argumentation and its role in different major approaches to commonsense reasoning in AI and logic programming. We present three novel results: We develop a theory for argumentation in which the acceptability of arguments i ..."
Abstract

Cited by 1169 (11 self)
 Add to MetaCart
(Show Context)
The purpose of this paper is to study the fundamental mechanism humans use in argumentation and its role in different major approaches to commonsense reasoning in AI and logic programming. We present three novel results: We develop a theory for argumentation in which the acceptability of arguments is precisely defined. We show that logic programming and nonmonotonic reasoning in AI are different forms of argumentation. We show that argumentation can be viewed as a special form of logic programming with negation as failure. This result introduces a general method for generating metainterpreters for argumentation systems. 1.
The WellFounded Semantics for General Logic Programs
 Journal of the ACM
, 1991
"... ..."
(Show Context)
Logical foundations of objectoriented and framebased languages
 JOURNAL OF THE ACM
, 1995
"... We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, ..."
Abstract

Cited by 880 (64 self)
 Add to MetaCart
(Show Context)
We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, encapsulation, and others. In a sense, Flogic stands in the same relationship to the objectoriented paradigm as classical predicate calculus stands to relational programming. Flogic has a modeltheoretic semantics and a sound and complete resolutionbased proof theory. A small number of fundamental concepts that come from objectoriented programming have direct representation in Flogic; other, secondary aspects of this paradigm are easily modeled as well. The paper also discusses semantic issues pertaining to programming with a deductive objectoriented language based on a subset of Flogic.
Constraint Logic Programming: A Survey
"... Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in differe ..."
Abstract

Cited by 866 (25 self)
 Add to MetaCart
Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in different areas of applications. In this survey of CLP, a primary goal is to give a systematic description of the major trends in terms of common fundamental concepts. The three main parts cover the theory, implementation issues, and programming for applications.
The DLV System for Knowledge Representation and Reasoning
 ACM Transactions on Computational Logic
, 2002
"... Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believ ..."
Abstract

Cited by 455 (100 self)
 Add to MetaCart
Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believed assumptions, DLP is strictly more expressive than normal (disjunctionfree) logic programming, whose expressiveness is limited to properties decidable in NP. Importantly, apart from enlarging the class of applications which can be encoded in the language, disjunction often allows for representing problems of lower complexity in a simpler and more natural fashion. This paper presents the DLV system, which is widely considered the stateoftheart implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, functionfree disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to ∆P 3complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of
Tabled Evaluation with Delaying for General Logic Programs
, 1996
"... SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evalu ..."
Abstract

Cited by 309 (29 self)
 Add to MetaCart
SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evaluation for three reasons: a) it may not terminate due to infinite positive recursion; b) it may not terminate due to infinite recursion through negation; c) it may repeatedly evaluate the same literal in a rule body, leading to unacceptable performance. We address three problems fir a goaloriented query evaluation of general logic programs by presenting tabled evaluation with delaying (SLG resolution).
Stable models and an alternative logic programming paradigm
 In The Logic Programming Paradigm: a 25Year Perspective
, 1999
"... In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting ..."
Abstract

Cited by 308 (20 self)
 Add to MetaCart
In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting alternative to more traditional logic programming styles of Horn logic programming, stratified logic programming and logic programming with wellfounded semantics. The proposed approach is based on the interpretation of program clauses as constraints. In this setting programs do not describe a single intended model, but a family of stable models. These stable models encode solutions to the constraint satisfaction problem described by the program. Our approach imposes restrictions on the syntax of logic programs. In particular, function symbols are eliminated from the language. We argue that the resulting logic programming system is wellattuned to problems in the class NP, has a welldefined domain of applications, and an emerging methodology of programming. We point out that what makes the whole approach viable is recent progress in implementations of algorithms to compute stable models of propositional logic programs. 1
Splitting a Logic Program
 Principles of Knowledge Representation
, 1994
"... In many cases, a logic program can be divided into two parts, so that one of them, the \bottom " part, does not refer to the predicates de ned in the \top " part. The \bottom " rules can be used then for the evaluation of the predicates that they de ne, and the computed va ..."
Abstract

Cited by 298 (15 self)
 Add to MetaCart
In many cases, a logic program can be divided into two parts, so that one of them, the \bottom &quot; part, does not refer to the predicates de ned in the \top &quot; part. The \bottom &quot; rules can be used then for the evaluation of the predicates that they de ne, and the computed values can be used to simplify the \top &quot; de nitions. We discuss this idea of splitting a program in the context of the answer set semantics. The main theorem shows how computing the answer sets for a program can be simpli ed when the program is split into parts. The programs covered by the theorem may use both negation as failure and classical negation, and their rules may have disjunctive heads. The usefulness of the concept of splitting for the investigation of answer sets is illustrated by several applications. First, we show that a conservative extension theorem by Gelfond and Przymusinska and a theorem on the closed world assumption by Gelfond and Lifschitz are easy consequences of the splitting theorem. Second, (locally) strati ed programs are shown to have a simple characterization in terms of splitting. The existence and uniqueness of an answer set for such a program can be easily derived from this characterization. Third, we relate the idea of splitting to the notion of orderconsistency. 1
Supporting Multiple Access Control Policies in Database Systems
 ACM Transactions on Database Systems
, 1996
"... Although there are several choices of policies for protection of information, access control models have been developed for a fixed set predefined access control policies that are then built into the corresponding access control mechanisms. This becomes a problem, however, if the access control req ..."
Abstract

Cited by 293 (44 self)
 Add to MetaCart
Although there are several choices of policies for protection of information, access control models have been developed for a fixed set predefined access control policies that are then built into the corresponding access control mechanisms. This becomes a problem, however, if the access control requirements of an application are different from the policies built into a mechanism. In most cases, the only solution is to enforce the requirements as part of the application code, but this makes verification, modification, and adequate enforcement of these policies impossible. In this paper, we propose a flexible authorization mechanism that can support different security policies. The mechanism enforces a general authorization model onto which multiple access control policies can be mapped. The model permits negative and positive authorizations, authorizations that must be strongly obeyed and authorizations that allow for exceptions, and enforces ownership together with delegation of admin...
The Alternating Fixpoint of Logic Programs with Negation
, 1995
"... The alternating fixpoint of a logic program with negation is defined constructively. The underlying idea is monotonically to build up a set of negative conclusions until the least fixpoint is reached, using a transformation related to the one that defines stable models. From a fixed set of negative ..."
Abstract

Cited by 247 (2 self)
 Add to MetaCart
The alternating fixpoint of a logic program with negation is defined constructively. The underlying idea is monotonically to build up a set of negative conclusions until the least fixpoint is reached, using a transformation related to the one that defines stable models. From a fixed set of negative conclusions, the positive conclusions follow (without deriving any further negative ones), by traditional Horn clause semantics. The union of positive and negative conclusions is called the alternating xpoint partial model. The name "alternating" was chosen because the transformation runs in two passes; the first pass transforms an underestimate of the set of negative conclusions into an (intermediate) overestimate; the second pass transforms the overestimate into a new underestimate; the composition of the two passes is monotonic. The principal contributions of this work are (1) that the alternating fixpoint partial model is identical to the wellfounded partial model, and (2) that alternating xpoint logic is at least as expressive as xpoint logic on all structures. Also, on finite structures, fixpoint logic is as expressive as alternating fixpoint logic.