Results 11  20
of
87
Stable Semantics for Disjunctive Programs
 New Generation Computing
, 1991
"... We introduce the stable model semantics for disjunctive logic programs and deductive databases, which generalizes the stable model semantics, defined earlier for normal (i.e., nondisjunctive) programs. Depending on whether only total (2valued) or all partial (3valued) models are used we obtain th ..."
Abstract

Cited by 163 (2 self)
 Add to MetaCart
We introduce the stable model semantics for disjunctive logic programs and deductive databases, which generalizes the stable model semantics, defined earlier for normal (i.e., nondisjunctive) programs. Depending on whether only total (2valued) or all partial (3valued) models are used we obtain the disjunctive stable semantics or the partial disjunctive stable semantics, respectively. The proposed semantics are shown to have the following properties: ffl For normal programs, the disjunctive (respectively, partial disjunctive) stable semantics coincides with the stable (respectively, partial stable) semantics. ffl For normal programs, the partial disjunctive stable semantics also coincides with the wellfounded semantics. ffl For locally stratified disjunctive programs both (total and partial) disjunctive stable semantics coincide with the perfect model semantics. ffl The partial disjunctive stable semantics can be generalized to the class of all disjunctive logic programs. ffl B...
WellFounded Semantics Coincides with ThreeValued Stable Semantics
 Fundamenta Informaticae
, 1990
"... We introduce 3valued stable models which are a natural generalization of standard (2valued) stable models. We show that every logic program P has at least one 3valued stable model and that the wellfounded model of any program P [VGRS90] coincides with the smallest 3valued stable model of P. We c ..."
Abstract

Cited by 139 (17 self)
 Add to MetaCart
We introduce 3valued stable models which are a natural generalization of standard (2valued) stable models. We show that every logic program P has at least one 3valued stable model and that the wellfounded model of any program P [VGRS90] coincides with the smallest 3valued stable model of P. We conclude that the wellfounded semantics of an arbitrary logic program coincides with the 3valued stable model semantics. The 3valued stable semantics is closely related to nonmonotonic formalisms in AI. Namely, every program P can be translated into a suitable autoepistemic (resp. default) theory P so that the 3valued stable semantics of P coincides with the (3valued) autoepistemic (resp. default) semantics of P . Similar results hold for circumscription and CWA. Moreover, it can be shown that the 3valued stable semantics has a natural extension to the class of all disjunctive logic programs and deductive databases. The author acknowledges support from the National Science Foundat...
Answer Sets in General Nonmonotonic Reasoning (Preliminary Report)
, 1992
"... Languages of declarative logic programming differ from other modal nonmonotonic formalisms by lack of syntactic uniformity. For instance, negation as failure can be used in the body of a rule, but not in the head; in disjunctive programs, disjunction is used in the head of a rule, but not in the bod ..."
Abstract

Cited by 103 (9 self)
 Add to MetaCart
Languages of declarative logic programming differ from other modal nonmonotonic formalisms by lack of syntactic uniformity. For instance, negation as failure can be used in the body of a rule, but not in the head; in disjunctive programs, disjunction is used in the head of a rule, but not in the body; in extended programs, negation as failure can be used on top of classical negation, but not the other way around. We argue that this lack of uniformity should not be viewed as a distinguishing feature of logic programming in general. As a starting point, we take a translation from the language of disjunctive programs with negation as failure and classical negation into MBNFthe logic of minimal belief and negation as failure. A class of theories based on this logic is defined, theories with protected literals, which is syntactically uniform and contains the translations of all programs. We show that theories with protected literals have a semantics similar to the answer set semantics us...
Logic Programming and Knowledge Representation  the AProlog perspective
 Artificial Intelligence
, 2002
"... In this paper we give a short introduction to logic programming approach to knowledge representation and reasoning. The intention is to help the reader to develop a 'feel' for the field's history and some of its recent developments. The discussion is mainly limited to logic programs under the answer ..."
Abstract

Cited by 87 (0 self)
 Add to MetaCart
In this paper we give a short introduction to logic programming approach to knowledge representation and reasoning. The intention is to help the reader to develop a 'feel' for the field's history and some of its recent developments. The discussion is mainly limited to logic programs under the answer set semantics. For understanding of approaches to logic programming build on wellfounded semantics, general theories of argumentation, abductive reasoning, etc., the reader is referred to other publications.
The expressive powers of logic programming semantics
 Abstract in Proc. PODS 90
, 1995
"... We study the expressive powers of two semantics for deductive databases and logic programming: the wellfounded semantics and the stable semantics. We compare them especially to two older semantics, the twovalued and threevalued program completion semantics. We identify the expressive power of the ..."
Abstract

Cited by 86 (5 self)
 Add to MetaCart
We study the expressive powers of two semantics for deductive databases and logic programming: the wellfounded semantics and the stable semantics. We compare them especially to two older semantics, the twovalued and threevalued program completion semantics. We identify the expressive power of the stable semantics, and in fairly general circumstances that of the wellfounded semantics. In particular, over infinite Herbrand universes, the four semantics all have the same expressive power. We discuss a feature of certain logic programming semantics, which we call the Principle of Stratification, a feature allowing a program to be built easily in modules. The threevalued program completion and wellfounded semantics satisfy this principle. Over infinite Herbrand models, we consider a notion of translatability between the threevalued program completion and wellfounded semantics which is in a sense uniform in the strata. In this sense of uniform translatability we show the wellfounded semantics to be more expressive than the threevalued program completion. The proof is a corollary of our result that over nonHerbrand infinite models, the wellfounded semantics is more expressive than the threevalued program completion semantics. 1
A Survey on Complexity Results for Nonmonotonic Logics
 Journal of Logic Programming
, 1993
"... This paper surveys the main results appeared in the literature on the computational complexity of nonmonotonic inference tasks. We not only give results about the tractability/intractability of the individual problems but we also analyze sources of complexity and explain intuitively the nature of e ..."
Abstract

Cited by 82 (5 self)
 Add to MetaCart
This paper surveys the main results appeared in the literature on the computational complexity of nonmonotonic inference tasks. We not only give results about the tractability/intractability of the individual problems but we also analyze sources of complexity and explain intuitively the nature of easy/hard cases. We focus mainly on nonmonotonic formalisms, like default logic, autoepistemic logic, circumscription, closedworld reasoning and abduction, whose relations with logic programming are clear and well studied. Complexity as well as recursiontheoretic results are surveyed. Work partially supported by the ESPRIT Basic Research Action COMPULOG and the Progetto Finalizzato Informatica of the CNR (Italian Research Council). The first author is supported by a CNR scholarship 1 Introduction Nonmonotonic logics and negation as failure in logic programming have been defined with the goal of providing formal tools for the representation of default information. One of the ideas und...
Default Reasoning System DeReS
, 1996
"... In this paper, we describe an automated reasoning system, called DeReS. DeReS implements default logic of Reiter by supporting several basic reasoning tasks such as testing whether extensions exist, finding one or all extensions (if at least one exists) and querying if a formula belongs to one ..."
Abstract

Cited by 71 (5 self)
 Add to MetaCart
In this paper, we describe an automated reasoning system, called DeReS. DeReS implements default logic of Reiter by supporting several basic reasoning tasks such as testing whether extensions exist, finding one or all extensions (if at least one exists) and querying if a formula belongs to one or all extensions. If an input theory is a logic program, DeReS computes stable models of this program and supports queries on membership of an atom in some or all stable models. The paper contains an account of our preliminary experiments with DeReS and a discussion of the results. We show that a choice of a propositional prover is critical for the efficiency of DeReS. We also present a general technique that eliminates the need for some global consistency checks and results in substantial speedups. We experimentally demonstrate the potential of the concept of relaxed stratification for making automated reasoning systems practical. 1 INTRODUCTION The area of nonmonotonic l...
Stationary Semantics for Normal and Disjunctive Logic Programs
 Annals of Mathematics and Artificial Intelligence
, 1991
"... this paper we show, however, that stationary expansions can be equivalently defined in terms of classical, 2valued logic. As a byproduct, we obtain a simpler and more natural description of stationary expansions. ..."
Abstract

Cited by 71 (14 self)
 Add to MetaCart
this paper we show, however, that stationary expansions can be equivalently defined in terms of classical, 2valued logic. As a byproduct, we obtain a simpler and more natural description of stationary expansions.
A new perspective on stable models
 In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI
, 2007
"... The definition of a stable model has provided a declarative semantics for Prolog programs with negation as failure and has led to the development of answer set programming. In this paper we propose a new definition of that concept, which covers many constructs used in answer set programming (includi ..."
Abstract

Cited by 66 (31 self)
 Add to MetaCart
The definition of a stable model has provided a declarative semantics for Prolog programs with negation as failure and has led to the development of answer set programming. In this paper we propose a new definition of that concept, which covers many constructs used in answer set programming (including disjunctive rules, choice rules and conditional literals) and, unlike the original definition, refers neither to grounding nor to fixpoints. Rather, it is based on a syntactic transformation, which turns a logic program into a formula of secondorder logic that is similar to the formula familiar from the definition of circumscription. 1
On the Declarative and Procedural Semantics of Logic Programs
 Journal of Automated Reasoning
, 1995
"... One of the most important and difficult problems in logic programming is the problem of finding a suitable declarative or intended semantics for logic programs. The importance of this problem stems from the declarative character of logic programming, whereas its difficulty can be largely attributed ..."
Abstract

Cited by 65 (8 self)
 Add to MetaCart
One of the most important and difficult problems in logic programming is the problem of finding a suitable declarative or intended semantics for logic programs. The importance of this problem stems from the declarative character of logic programming, whereas its difficulty can be largely attributed to the nonmonotonic character of the negation operator used in logic programs. The problem can therefore be viewed as the problem of finding a suitable formalization of the type of nonmonotonic reasoning used in logic programming. In this paper we introduce a semantics of logic programs based on the class PERF(P) of all, not necessarily Herbrand, perfect models of a program P and we show that the proposed semantics is not only natural but it also combines many of the desirable features of previous approaches, at the same time eliminating some of their drawbacks. For a positive program P, the class PERF(P) of perfect models coincides with the class MIN(P) of all minimal models of P. The per...