Results 1 - 10
of
279
Learning to detect unseen object classes by betweenclass attribute transfer
- In CVPR
, 2009
"... We study the problem of object classification when training and test classes are disjoint, i.e. no training examples of the target classes are available. This setup has hardly been studied in computer vision research, but it is the rule rather than the exception, because the world contains tens of t ..."
Abstract
-
Cited by 363 (5 self)
- Add to MetaCart
(Show Context)
We study the problem of object classification when training and test classes are disjoint, i.e. no training examples of the target classes are available. This setup has hardly been studied in computer vision research, but it is the rule rather than the exception, because the world contains tens of thousands of different object classes and for only a very few of them image, collections have been formed and annotated with suitable class labels. In this paper, we tackle the problem by introducing attribute-based classification. It performs object detection based on a human-specified high-level description of the target objects instead of training images. The description consists of arbitrary semantic attributes, like shape, color or even geographic information. Because such properties transcend the specific learning task at hand, they can be pre-learned, e.g. from image datasets unrelated to the current task. Afterwards, new classes can be detected based on their attribute representation, without the need for a new training phase. In order to evaluate our method and to facilitate research in this area, we have assembled a new largescale dataset, “Animals with Attributes”, of over 30,000 animal images that match the 50 classes in Osherson’s classic table of how strongly humans associate 85 semantic attributes with animal classes. Our experiments show that by using an attribute layer it is indeed possible to build a learning object detection system that does not require any training images of the target classes. 1.
Sharing Features: Efficient Boosting Procedures for Multiclass Object Detection
- IN CVPR
, 2004
"... We consider the problem of detecting a large number of different object classes in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, which can be slow and require much training data. We present a multi-class boosting procedure (joint boosting) ..."
Abstract
-
Cited by 309 (16 self)
- Add to MetaCart
We consider the problem of detecting a large number of different object classes in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, which can be slow and require much training data. We present a multi-class boosting procedure (joint boosting) that reduces both the computational and sample complexity, by finding common features that can be shared across the classes. The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required is observed to scale approximately logarithmically with the number of classes. In addition, we find that the features selected by independently trained classifiers are often specific to the class, whereas the features selected by the jointly trained classifiers are more generic features, such as lines and edges.
TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context
, 2007
"... This paper details a new approach for learning a discriminative model of object classes, incorporating texture, layout, and context information efficiently. The learned model is used for automatic visual understanding and semantic segmentation of photographs. Our discriminative model exploits textur ..."
Abstract
-
Cited by 217 (9 self)
- Add to MetaCart
This paper details a new approach for learning a discriminative model of object classes, incorporating texture, layout, and context information efficiently. The learned model is used for automatic visual understanding and semantic segmentation of photographs. Our discriminative model exploits texture-layout filters, novel features based on textons, which jointly model patterns of texture and their spatial layout. Unary classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied to a large number of classes. Accurate image segmentation is achieved by incorporating the unary classifier in a conditional random field, which (i) captures the spatial interactions between class labels of neighboring pixels, and (ii) improves the segmentation of specific object instances. Efficient training of the model on large datasets is achieved by exploiting both random feature selection and piecewise training methods. High classification and segmentation accuracy is
Face Detection, Pose Estimation, and Landmark Localization in the Wild
"... We present a unified model for face detection, pose estimation, and landmark estimation in real-world, cluttered images. Our model is based on a mixtures of trees with a shared pool of parts; we model every facial landmark as a part and use global mixtures to capture topological changes due to viewp ..."
Abstract
-
Cited by 189 (6 self)
- Add to MetaCart
(Show Context)
We present a unified model for face detection, pose estimation, and landmark estimation in real-world, cluttered images. Our model is based on a mixtures of trees with a shared pool of parts; we model every facial landmark as a part and use global mixtures to capture topological changes due to viewpoint. We show that tree-structured models are surprisingly effective at capturing global elastic deformation, while being easy to optimize unlike dense graph structures. We present extensive results on standard face benchmarks, as well as a new “in the wild ” annotated dataset, that suggests our system advances the state-of-theart, sometimes considerably, for all three tasks. Though our model is modestly trained with hundreds of faces, it compares favorably to commercial systems trained with billions of examples (such as Google Picasa and face.com). 1.
Efficient Object Category Recognition Using
"... Abstract. We introduce a new descriptor for images which allows the construction of efficient and compact classifiers with good accuracy on object category recognition. The descriptor is the output of a large number of weakly trained object category classifiers on the image. The trained categories a ..."
Abstract
-
Cited by 122 (9 self)
- Add to MetaCart
(Show Context)
Abstract. We introduce a new descriptor for images which allows the construction of efficient and compact classifiers with good accuracy on object category recognition. The descriptor is the output of a large number of weakly trained object category classifiers on the image. The trained categories are selected from an ontology of visual concepts, but the intention is not to encode an explicit decomposition of the scene. Rather, we accept that existing object category classifiers often encode not the category per se but ancillary image characteristics; and that these ancillary characteristics can combine to represent visual classes unrelated to the constituent categories ’ semantic meanings. The advantage of this descriptor is that it allows object-category queries to be made against image databases using efficient classifiers (efficient at test time) such as linear support vector machines, and allows these queries to be for novel categories. Even when the representation is reduced to 200 bytes per image, classification accuracy on object category recognition is comparable with the state of the art (36 % versus 42%), but at orders of magnitude lower computational cost.
Uncovering shared structures in multiclass classification
- In Proceedings of the Twenty-fourth International Conference on Machine Learning
, 2007
"... This paper suggests a method for multiclass learning with many classes by simultaneously learning shared characteristics common to the classes, and predictors for the classes in terms of these characteristics. We cast this as a convex optimization problem, using trace-norm regularization and study g ..."
Abstract
-
Cited by 103 (0 self)
- Add to MetaCart
(Show Context)
This paper suggests a method for multiclass learning with many classes by simultaneously learning shared characteristics common to the classes, and predictors for the classes in terms of these characteristics. We cast this as a convex optimization problem, using trace-norm regularization and study gradient-based optimization both for the linear case and the kernelized setting. 1.
Learning 3D mesh segmentation and labeling
- ACM Trans. on Graphics
, 2010
"... head torso upper arm lower arm hand upper leg lower leg foot ear head torso arm leg tail body fin handle cup top base arm lens bridge antenna head thorax leg abdomen cup handle face hair neck fin stabilizer body wing top leg thumb index middle ring pinky palm big roller medium roller axle handle joi ..."
Abstract
-
Cited by 101 (7 self)
- Add to MetaCart
head torso upper arm lower arm hand upper leg lower leg foot ear head torso arm leg tail body fin handle cup top base arm lens bridge antenna head thorax leg abdomen cup handle face hair neck fin stabilizer body wing top leg thumb index middle ring pinky palm big roller medium roller axle handle joint jaws head neck torso leg tail ear head torso back upper arm lower arm hand upper leg lower leg foot tail head wing body leg tail big cube small cube back middle seat leg head tentacle Figure 1: Labeling and segmentation results from applying our algorithm to one mesh each from every category in the Princeton Segmentation Benchmark [Chen et al. 2009]. For each result, the algorithm was trained on the other meshes in the same class, e.g., the human was labeled after training on the other meshes in the human class. This paper presents a data-driven approach to simultaneous segmentation and labeling of parts in 3D meshes. An objective function is formulated as a Conditional Random Field model, with terms assessing the consistency of faces with labels, and terms between labels of neighboring faces. The objective function is learned from a collection of labeled training meshes. The algorithm uses hundreds of geometric and contextual label features and learns different types of segmentations for different tasks, without requiring manual parameter tuning. Our algorithm achieves a significant improvement in results over the state-of-the-art when evaluated on the Princeton Segmentation Benchmark, often producing segmentations and labelings comparable to those produced by humans. 1
Zero-shot learning with semantic output codes.
- In NIPS,
, 2009
"... Abstract We consider the problem of zero-shot learning, where the goal is to learn a classifier f : X → Y that must predict novel values of Y that were omitted from the training set. To achieve this, we define the notion of a semantic output code classifier (SOC) which utilizes a knowledge base of ..."
Abstract
-
Cited by 88 (8 self)
- Add to MetaCart
(Show Context)
Abstract We consider the problem of zero-shot learning, where the goal is to learn a classifier f : X → Y that must predict novel values of Y that were omitted from the training set. To achieve this, we define the notion of a semantic output code classifier (SOC) which utilizes a knowledge base of semantic properties of Y to extrapolate to novel classes. We provide a formalism for this type of classifier and study its theoretical properties in a PAC framework, showing conditions under which the classifier can accurately predict novel classes. As a case study, we build a SOC classifier for a neural decoding task and show that it can often predict words that people are thinking about from functional magnetic resonance images (fMRI) of their neural activity, even without training examples for those words.
A Hough transform-based voting framework for action recognition
- IN: CVPR
, 2010
"... We present a method to classify and localize human actions in video using a Hough transform voting framework. Random trees are trained to learn a mapping between densely-sampled feature patches and their corresponding votes in a spatio-temporal-action Hough space. The leaves of the trees form a disc ..."
Abstract
-
Cited by 70 (11 self)
- Add to MetaCart
(Show Context)
We present a method to classify and localize human actions in video using a Hough transform voting framework. Random trees are trained to learn a mapping between densely-sampled feature patches and their corresponding votes in a spatio-temporal-action Hough space. The leaves of the trees form a discriminative multi-class codebook that share features between the action classes and vote for action centers in a probabilistic manner. Using low-level features such as gradients and optical flow, we demonstrate that Hough-voting can achieve state-of-the-art performance on several datasets covering a wide range of action-recognition scenarios.