Results 1 
8 of
8
Computing a glimpse of randomness
 Experimental Mathematics
"... A Chaitin Omega number is the halting probability of a universal Chaitin (selfdelimiting Turing) machine. Every Omega number is both computably enumerable (the limit of a computable, increasing, converging sequence of rationals) and random (its binary expansion is an algorithmic random sequence). In ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
A Chaitin Omega number is the halting probability of a universal Chaitin (selfdelimiting Turing) machine. Every Omega number is both computably enumerable (the limit of a computable, increasing, converging sequence of rationals) and random (its binary expansion is an algorithmic random sequence). In particular, every Omega number is strongly noncomputable. The aim of this paper is to describe a procedure, which combines Java programming and mathematical proofs, for computing the exact values of the first 63 bits of a Chaitin Omega: 000000100000010000100000100001110111001100100111100010010011100. Full description of programs and proofs will be given elsewhere. 1
Chaitin Ω Numbers, Solovay Machines, and Incompleteness
 COMPUT. SCI
, 1999
"... Computably enumerable (c.e.) reals can be coded by Chaitin machines through their halting probabilities. Tuning Solovay's construction of a Chaitin universal machine for which ZFC (if arithmetically sound) cannot determine any single bit of the binary expansion of its halting probability, we show ..."
Abstract

Cited by 17 (15 self)
 Add to MetaCart
Computably enumerable (c.e.) reals can be coded by Chaitin machines through their halting probabilities. Tuning Solovay's construction of a Chaitin universal machine for which ZFC (if arithmetically sound) cannot determine any single bit of the binary expansion of its halting probability, we show that every c.e. random real is the halting probability of a universal Chaitin machine for which ZFC cannot determine more than its initial block of 1 bitsas soon as you get a 0 it's all over. Finally, a constructive version of Chaitin informationtheoretic incompleteness theorem is proven.
Constructive dimension and weak truthtable degrees
 In Computation and Logic in the Real World  Third Conference of Computability in Europe. SpringerVerlag Lecture Notes in Computer Science #4497
, 2007
"... Abstract. This paper examines the constructive Hausdorff and packing dimensions of weak truthtable degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is weak truthtable equivalent to a sequence R with ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
Abstract. This paper examines the constructive Hausdorff and packing dimensions of weak truthtable degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is weak truthtable equivalent to a sequence R with dimH(R) ≥ dimH(S)/dimP(S) − ɛ, for arbitrary ɛ> 0. Furthermore, if dimP(S)> 0, then dimP(R) ≥ 1−ɛ. The reduction thus serves as a randomness extractor that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of wtt degrees (and, by extension, Turing degrees). A lower bound of dimH(S)/dimP(S) is shown to hold for the wtt degree of any sequence S. A new proof is given of a previouslyknown zeroone law for the constructive packing dimension of wtt degrees. It is also shown that, for any regular sequence S (that is, dimH(S) = dimP(S)) such that dimH(S)> 0, the wtt degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor.
Constructive dimension and Turing degrees
"... This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is Turing equivalent to a sequence R with dimH(R) ≥ (dimH(S)/dimP(S)) ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is Turing equivalent to a sequence R with dimH(R) ≥ (dimH(S)/dimP(S)) − ɛ, for arbitrary ɛ> 0. Furthermore, if dimP(S)> 0, then dimP(R) ≥ 1 − ɛ. The reduction thus serves as a randomness extractor that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dimH(S)/dimP(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previouslyknown zeroone law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dimH(S) = dimP(S)) such that dimH(S)> 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truthtable and bounded Turing reductions differ in their ability to extract dimension.
S.: Passages of proof
 Bull. Eur. Assoc. Theor. Comput. Sci. EATCS
, 2004
"... Whether ’tis nobler in the mind to suffer The slings and arrows of outrageous fortune, Or to take arms against a sea of troubles And by opposing end them? Hamlet 3/1, by W. Shakespeare In this paper we propose a new perspective on the evolution and history of the idea of mathematical proof. Proofs w ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Whether ’tis nobler in the mind to suffer The slings and arrows of outrageous fortune, Or to take arms against a sea of troubles And by opposing end them? Hamlet 3/1, by W. Shakespeare In this paper we propose a new perspective on the evolution and history of the idea of mathematical proof. Proofs will be studied at three levels: syntactical, semantical and pragmatical. Computerassisted proofs will be give a special attention. Finally, in a highly speculative part, we will anticipate the evolution of proofs under the assumption that the quantum computer will materialize. We will argue that there is little ‘intrinsic ’ difference between traditional and ‘unconventional ’ types of proofs. 2 Mathematical Proofs: An Evolution in Eight Stages Theory is to practice as rigour is to vigour. D. E. Knuth Reason and experiment are two ways to acquire knowledge. For a long time mathematical
Who Is Afraid of Randomness?
, 2000
"... Introduction Randomness## mark of anxiety, the cause of disarray or misfortune, the cure for boring repetitiveness, is, like it or not, one of the most powerful driving forces of life. Is it bad? Is it good? The struggle with uncertainty and risk caused by natural disasters, market downturns or ..."
Abstract
 Add to MetaCart
Introduction Randomness## mark of anxiety, the cause of disarray or misfortune, the cure for boring repetitiveness, is, like it or not, one of the most powerful driving forces of life. Is it bad? Is it good? The struggle with uncertainty and risk caused by natural disasters, market downturns or terrorism is balanced by the role played by randomness in generating diversity and innovation, in allowing complicated structures to emerge through the exploitation of serendipitous accidents. To many minds any discussion about randomness is purely academic, just another mathematical or philosophical pedantry. False! Randomness could be a matter of life or death, as in the case of Sudden Infant Death Syndrome (SIDS), a merciless childkiller. The present paper describes some di#culties regarding the mathematical modelling of randomness, contrasts siliconcomputer generated pseudorandom bits with quantumcomputer "random" bits, succinctly presents the algorithmic definition of random
legitimise the conquests of intuition... J.
, 2008
"... The object of mathematical rigour is to sanction and ..."
Université de Provence
, 2009
"... This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is Turing equivalent to a sequence R with dimH(R) ≥ (dimH(S)/dimP(S)) ..."
Abstract
 Add to MetaCart
This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is Turing equivalent to a sequence R with dimH(R) ≥ (dimH(S)/dimP(S)) − ǫ, for arbitrary ǫ> 0. Furthermore, if dimP(S)> 0, then dimP(R) ≥ 1 − ǫ. The reduction thus serves as a randomness extractor that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dimH(S)/dimP(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previouslyknown zeroone law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dimH(S) = dimP(S)) such that dimH(S)> 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truthtable and bounded Turing reductions differ in their ability to extract dimension. 1