Results 1  10
of
343
Multiparty Communication Complexity
, 1989
"... A given Boolean function has its input distributed among many parties. The aim is to determine which parties to tMk to and what information to exchange with each of them in order to evaluate the function while minimizing the total communication. This paper shows that it is possible to obtain the Boo ..."
Abstract

Cited by 614 (21 self)
 Add to MetaCart
A given Boolean function has its input distributed among many parties. The aim is to determine which parties to tMk to and what information to exchange with each of them in order to evaluate the function while minimizing the total communication. This paper shows that it is possible to obtain the Boolean answer deterministically with only a polynomial increase in communication with respect to the information lower bound given by the nondeterministic communication complexity of the function.
Universally composable security: A new paradigm for cryptographic protocols
, 2013
"... We present a general framework for representing cryptographic protocols and analyzing their security. The framework allows specifying the security requirements of practically any cryptographic task in a unified and systematic way. Furthermore, in this framework the security of protocols is preserved ..."
Abstract

Cited by 611 (34 self)
 Add to MetaCart
We present a general framework for representing cryptographic protocols and analyzing their security. The framework allows specifying the security requirements of practically any cryptographic task in a unified and systematic way. Furthermore, in this framework the security of protocols is preserved under a general protocol composition operation, called universal composition. The proposed framework with its securitypreserving composition operation allows for modular design and analysis of complex cryptographic protocols from relatively simple building blocks. Moreover, within this framework, protocols are guaranteed to maintain their security in any context, even in the presence of an unbounded number of arbitrary protocol instances that run concurrently in an adversarially controlled manner. This is a useful guarantee, that allows arguing about the security of cryptographic protocols in complex and unpredictable environments such as modern communication networks.
Entity Authentication and Key Distribution
, 1993
"... Entity authentication and key distribution are central cryptographic problems in distributed computing  but up until now, they have lacked even a meaningful definition. One consequence is that incorrect and inefficient protocols have proliferated. This paper provides the first treatment of these p ..."
Abstract

Cited by 463 (13 self)
 Add to MetaCart
Entity authentication and key distribution are central cryptographic problems in distributed computing  but up until now, they have lacked even a meaningful definition. One consequence is that incorrect and inefficient protocols have proliferated. This paper provides the first treatment of these problems in the complexitytheoretic framework of modern cryptography. Addressed in detail are two problems of the symmetric, twoparty setting: mutual authentication and authenticated key exchange. For each we present a definition, protocol, and proof that the protocol meets its goal, assuming the (minimal) assumption of pseudorandom function. When this assumption is appropriately instantiated, the protocols given are practical and efficient.
ℓdiversity: Privacy beyond kanonymity
 In ICDE
, 2006
"... Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new definition of privacy called kanonymity has gained popularity. In a kanonymized dataset, each record is indistinguishable from at least k − 1 other records with resp ..."
Abstract

Cited by 445 (12 self)
 Add to MetaCart
Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new definition of privacy called kanonymity has gained popularity. In a kanonymized dataset, each record is indistinguishable from at least k − 1 other records with respect to certain “identifying ” attributes. In this paper we show using two simple attacks that a kanonymized dataset has some subtle, but severe privacy problems. First, an attacker can discover the values of sensitive attributes when there is little diversity in those sensitive attributes. This kind of attack is a known problem [60]. Second, attackers often have background knowledge, and we show that kanonymity does not guarantee privacy against attackers using background knowledge. We give a detailed analysis of these two attacks and we propose a novel and powerful privacy criterion called ℓdiversity that can defend against such attacks. In addition to building a formal foundation for ℓdiversity, we show in an experimental evaluation that ℓdiversity is practical and can be implemented efficiently. 1.
Security and Composition of Multiparty Cryptographic Protocols
 JOURNAL OF CRYPTOLOGY
, 1998
"... We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions f ..."
Abstract

Cited by 389 (18 self)
 Add to MetaCart
We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions follow the general paradigm of known definitions; yet some substantial modifications and simplifications are introduced. The composition operation is the natural `subroutine substitution' operation, formalized by Micali and Rogaway. We consider several standard settings for multiparty protocols, including the cases of eavesdropping, Byzantine, nonadaptive and adaptive adversaries, as well as the informationtheoretic and the computational models. In particular, in the computational model we provide the first definition of security of protocols that is shown to be preserved under composition.
Security Arguments for Digital Signatures and Blind Signatures
 JOURNAL OF CRYPTOLOGY
, 2000
"... Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the ..."
Abstract

Cited by 278 (35 self)
 Add to MetaCart
Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the
Bit Commitment Using PseudoRandomness
 Journal of Cryptology
, 1991
"... We show how a pseudorandom generator can provide a bit commitment protocol. We also analyze the number of bits communicated when parties commit to many bits simultaneously, and show that the assumption of the existence of pseudorandom generators suffices to assure amortized O(1) bits of communicat ..."
Abstract

Cited by 228 (15 self)
 Add to MetaCart
We show how a pseudorandom generator can provide a bit commitment protocol. We also analyze the number of bits communicated when parties commit to many bits simultaneously, and show that the assumption of the existence of pseudorandom generators suffices to assure amortized O(1) bits of communication per bit commitment.
Privacy Preserving Auctions and Mechanism Design
, 1999
"... We suggest an architecture for executing protocols for auctions and, more generally, mechanism design. Our goal is to preserve the privacy of the inputs of the participants (so that no nonessential information about them is divulged, even a posteriori) while maintaining communication and computation ..."
Abstract

Cited by 185 (12 self)
 Add to MetaCart
We suggest an architecture for executing protocols for auctions and, more generally, mechanism design. Our goal is to preserve the privacy of the inputs of the participants (so that no nonessential information about them is divulged, even a posteriori) while maintaining communication and computational efficiency. We achieve this goal by adding another party  the auction issuer  that generates the programs for computing the auctions but does not take an active part in the protocol. The auction issuer is not a trusted party, but is assumed not to collude with the auctioneer. In the case of auctions, barring collusion between the auctioneer and the auction issuer, neither party gains any information about the bids, even after the auction is over. Moreover, bidders can verify that the auction was performed correctly. The protocols do not require any communication between the bidders and the auction issuer and the computational efficiency is very reasonable. This architecture can be used to implement any mechanism design where the important factor is the complexity of the decision procedure.
Secure agreement protocols: Reliable and atomic group multicast in Rampart
 In Proceedings of the 2nd ACM Conference on Computer and Communications Security
, 1994
"... Reliable and atomic group multicast have been proposed as fundamental communication paradigms to support secure distributed computing in systems in which processes may behave maliciously. These protocols enable messages to be multicast to a group of processes, while ensuring that all honest group ..."
Abstract

Cited by 168 (17 self)
 Add to MetaCart
Reliable and atomic group multicast have been proposed as fundamental communication paradigms to support secure distributed computing in systems in which processes may behave maliciously. These protocols enable messages to be multicast to a group of processes, while ensuring that all honest group members deliver the same messages and, in the case of atomic multicast, deliver these messages in the same order. We present new reliable and atomic group multicast protocols for asynchronous distributed systems. We also describe their implementation as part of Rampart, a toolkit for building highintegrily distributed services, i.e., services that remain correct and available despite the corruption of some component servers by an attacker. To our knowledge, Rampart is the first system to demonstrate reliable and atomic group multicast in asynchronous systems subject to process corruptions. 1
A note on efficient zeroknowledge proofs and arguments (Extended Abstract)
, 1992
"... In this note, we present new zeroknowledge interactive proofs and arguments for languages in NP. To show that z G L, with an error probability of at most 2k, our zeroknowledge proof system requires O(lzlc’) + O(lg ” l~l)k ideal bit commitments, where c1 and cz depend only on L. This construction ..."
Abstract

Cited by 146 (2 self)
 Add to MetaCart
In this note, we present new zeroknowledge interactive proofs and arguments for languages in NP. To show that z G L, with an error probability of at most 2k, our zeroknowledge proof system requires O(lzlc’) + O(lg ” l~l)k ideal bit commitments, where c1 and cz depend only on L. This construction is the first in the ideal bit commitment model that achieves large values of k more efficiently than by running k independent iterations of the base interactive proof system. Under suitable complexity assumptions, we exhibit a zeroknowledge arguments that require O(lg ’ Izl)ki bits of communication, where c depends only on L, and 1 is the security parameter for the prover.l This is the first construction in which the total amount of communication can be less than that needed to transmit the NP witness. Our protocols are based on efficiently checkable proofs for NP [4].