Results 1 
5 of
5
Degrees of random sets
, 1991
"... An explicit recursiontheoretic definition of a random sequence or random set of natural numbers was given by MartinLöf in 1966. Other approaches leading to the notions of nrandomness and weak nrandomness have been presented by Solovay, Chaitin, and Kurtz. We investigate the properties of nrando ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
An explicit recursiontheoretic definition of a random sequence or random set of natural numbers was given by MartinLöf in 1966. Other approaches leading to the notions of nrandomness and weak nrandomness have been presented by Solovay, Chaitin, and Kurtz. We investigate the properties of nrandom and weakly nrandom sequences with an emphasis on the structure of their Turing degrees. After an introduction and summary, in Chapter II we present several equivalent definitions of nrandomness and weak nrandomness including a new definition in terms of a forcing relation analogous to the characterization of ngeneric sequences in terms of Cohen forcing. We also prove that, as conjectured by Kurtz, weak nrandomness is indeed strictly weaker than nrandomness. Chapter III is concerned with intrinsic properties of nrandom sequences. The main results are that an (n + 1)random sequence A satisfies the condition A (n) ≡T A⊕0 (n) (strengthening a result due originally to Sacks) and that nrandom sequences satisfy a number of strong independence properties, e.g., if A ⊕ B is nrandom then A is nrandom relative to B. It follows that any countable distributive lattice can be embedded
On a conjecture of Dobrinen and Simpson concerning almost everywhere domination
, 2005
"... Dobrinen and Simpson [4] introduced the notions of almost everywhere domination and uniform almost everywhere domination to study recursion theoretic analogues of results in set theory concerning domination in generic extensions of transitive models of ZFC and to study regularity properties of the L ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Dobrinen and Simpson [4] introduced the notions of almost everywhere domination and uniform almost everywhere domination to study recursion theoretic analogues of results in set theory concerning domination in generic extensions of transitive models of ZFC and to study regularity properties of the Lebesgue measure on 2ω in reverse mathematics. In this article,
Jump inversions inside effectively closed sets and applications to randomness
 J. Symbolic Logic
"... Abstract. We study inversions of the jump operator on Π0 1 classes, combined with certain basis theorems. These jump inversions have implications for the study of the jump operator on the random degrees—for various notions of randomness. For example, we characterize the jumps of the weakly 2random ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. We study inversions of the jump operator on Π0 1 classes, combined with certain basis theorems. These jump inversions have implications for the study of the jump operator on the random degrees—for various notions of randomness. For example, we characterize the jumps of the weakly 2random sets which are not 2random, and the jumps of the weakly 1random relative to 0 ′ sets which are not 2random. Both of the classes coincide with the degrees above 0 ′ which are not 0 ′dominated. A further application is the complete solution of [Nie09, Problem 3.6.9]: one direction of van Lambalgen’s theorem holds for weak 2randomness, while the other fails. Finally we discuss various techniques for coding information into incomplete randoms. Using these techniques we give a negative answer to [Nie09, Problem 8.2.14]: not all weakly 2random sets are array computable. In fact, given any oracle X, there is a weakly 2random which is not array computable relative to X. This contrasts with the fact that all 2random sets are array computable. 1.
Annals of Mathematics FirstOrder Theory of the Degrees of Recursive Unsolvability
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract
 Add to MetaCart
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of