Results 1  10
of
88
Zeroes of Zeta Functions and Symmetry
, 1999
"... Hilbert and Polya suggested that there might be a natural spectral interpretation of the zeroes of the Riemann Zeta function. While at the time there was little evidence for this, today the evidence is quite convincing. Firstly, there are the “function field” analogues, that is zeta functions of cur ..."
Abstract

Cited by 182 (2 self)
 Add to MetaCart
(Show Context)
Hilbert and Polya suggested that there might be a natural spectral interpretation of the zeroes of the Riemann Zeta function. While at the time there was little evidence for this, today the evidence is quite convincing. Firstly, there are the “function field” analogues, that is zeta functions of curves over finite fields and their generalizations. For these a spectral interpretation for their zeroes exists in terms of eigenvalues of Frobenius on cohomology. Secondly, the developments, both theoretical and numerical, on the local spacing distributions between the high zeroes of the zeta function and its generalizations give striking evidence for such a spectral connection. Moreover, the lowlying zeroes of various families of zeta functions follow laws for the eigenvalue distributions of members of the classical groups. In this paper we review these developments. In order to present the material fluently, we do not proceed in chronological order of discovery. Also, in concentrating entirely on the subject matter of the title, we are ignoring the standard body of important work that has been done on the zeta function and Lfunctions.
Matrix models for betaensembles
 J. Math. Phys
, 2002
"... This paper constructs tridiagonal random matrix models for general (β> 0) βHermite (Gaussian) and βLaguerre (Wishart) ensembles. These generalize the wellknown Gaussian and Wishart models for β = 1,2,4. Furthermore, in the cases of the βLaguerre ensembles, we eliminate the exponent quantizati ..."
Abstract

Cited by 170 (21 self)
 Add to MetaCart
(Show Context)
This paper constructs tridiagonal random matrix models for general (β> 0) βHermite (Gaussian) and βLaguerre (Wishart) ensembles. These generalize the wellknown Gaussian and Wishart models for β = 1,2,4. Furthermore, in the cases of the βLaguerre ensembles, we eliminate the exponent quantization present in the previously known models. We further discuss applications for the new matrix models, and present some open problems.
On the distribution of spacings between zeros of the zeta function
 MATH. COMP
, 1987
"... A numerical study of the distribution of spacings between zeros of the Riemann zeta function is presented. It is based on values for the first 10 5 zeros and for zeros number 10 12 + 1 to 10 12 + 10 5 that are accurate to within ± 10 − 8, and which were calculated on the Cray1 and Cray XMP compute ..."
Abstract

Cited by 124 (9 self)
 Add to MetaCart
(Show Context)
A numerical study of the distribution of spacings between zeros of the Riemann zeta function is presented. It is based on values for the first 10 5 zeros and for zeros number 10 12 + 1 to 10 12 + 10 5 that are accurate to within ± 10 − 8, and which were calculated on the Cray1 and Cray XMP computers. This study tests the Montgomery pair correlation conjecture as well as some further conjectures that predict that the zeros of the zeta function behave similarly to eigenvalues of random hermitian matrices. Matrices of this type are used in modeling energy levels in physics, and many statistical properties of their eigenvalues are known. The agreement between actual statistics for zeros of the zeta function and conjectured results is generally good, and improves at larger heights. Several initially unexpected phenomena were found in the data and some were explained by
The Riemann Zeros and Eigenvalue Asymptotics
 SIAM Rev
, 1999
"... Comparison between formulae for the counting functions of the heights t n of the Riemann zeros and of semiclassical quantum eigenvalues En suggests that the t n are eigenvalues of an (unknown) hermitean operator H, obtained by quantizing a classical dynamical system with hamiltonian H cl . Many feat ..."
Abstract

Cited by 61 (10 self)
 Add to MetaCart
(Show Context)
Comparison between formulae for the counting functions of the heights t n of the Riemann zeros and of semiclassical quantum eigenvalues En suggests that the t n are eigenvalues of an (unknown) hermitean operator H, obtained by quantizing a classical dynamical system with hamiltonian H cl . Many features of H cl are provided by the analogy; for example, the "Riemann dynamics" should be chaotic and have periodic orbits whose periods are multiples of logarithms of prime numbers. Statistics of the t n have a similar structure to those of the semiclassical En ; in particular, they display randommatrix universality at short range, and nonuniversal behaviour over longer ranges. Very refined features of the statistics of the t n can be computed accurately from formulae with quantum analogues. The RiemannSiegel formula for the zeta function is described in detail. Its interpretation as a relation between long and short periodic orbits gives further insights into the quantum spectral fluctuations. We speculate that the Riemann dynamics is related to the trajectories generated by the classical hamiltonian H cl = XP. Key words. spectral asymptotics, number theory AMS subject classifications. 11M26, 11M06, 35P20, 35Q40, 41A60, 81Q10, 81Q50 PII. S0036144598347497 1.
Mean values of Lfunctions and symmetry
 Int. Math. Res. Notices
"... Abstract. Recently Katz and Sarnak introduced the idea of a symmetry group attached to a family of L–functions, and they gave strong evidence that the symmetry group governs many properties of the distribution of zeros of the L–functions. We consider the mean–values of the L–functions and the mollif ..."
Abstract

Cited by 56 (14 self)
 Add to MetaCart
(Show Context)
Abstract. Recently Katz and Sarnak introduced the idea of a symmetry group attached to a family of L–functions, and they gave strong evidence that the symmetry group governs many properties of the distribution of zeros of the L–functions. We consider the mean–values of the L–functions and the mollified mean–square of the L–functions and find evidence that these are also governed by the symmetry group. We use recent work of Keating and Snaith to give a complete description of these mean values. We find a connection to the Barnes–Vignéras Γ2–function and to a family of self–similar functions. 1.
Linear statistics of lowlying zeros of L–functions”, (preprint
"... Abstract. We consider linear statistics of the scaled zeros of Dirichlet L– functions, and show that the first few moments converge to the Gaussian moments. The number of Gaussian moments depends on the particular statistic considered. The same phenomenon is found in Random Matrix Theory, where we c ..."
Abstract

Cited by 53 (5 self)
 Add to MetaCart
(Show Context)
Abstract. We consider linear statistics of the scaled zeros of Dirichlet L– functions, and show that the first few moments converge to the Gaussian moments. The number of Gaussian moments depends on the particular statistic considered. The same phenomenon is found in Random Matrix Theory, where we consider linear statistics of scaled eigenphases for matrices in the unitary group. In that case the higher moments are no longer Gaussian. We conjecture that this also happens for Dirichlet L–functions. 1.
Disproof of the Mertens conjecture
 J. REINE ANGEW. MATH
, 1985
"... The Mertens conjecture states that ⎪ M(x) ⎪ < x 1 ⁄ 2 for all x> 1, where M(x) = Σ μ(n), n ≤ x and μ(n) is the Möbius function. This conjecture has attracted a substantial amount of interest in its almost 100 years of existence because its truth was known to imply the truth of the Riemann hyp ..."
Abstract

Cited by 42 (3 self)
 Add to MetaCart
The Mertens conjecture states that ⎪ M(x) ⎪ < x 1 ⁄ 2 for all x> 1, where M(x) = Σ μ(n), n ≤ x and μ(n) is the Möbius function. This conjecture has attracted a substantial amount of interest in its almost 100 years of existence because its truth was known to imply the truth of the Riemann hypothesis. This paper disproves the Mertens conjecture by showing that lim sup M(x) x x → ∞ − 1 ⁄ 2> 1. 06. The disproof relies on extensive computations with the zeros of the zeta function, and does not provide an explicit counterexample.