Results 1  10
of
91
Random Matrix Theory and ζ(1/2 + it)
, 2000
"... We study the characteristic polynomials Z(U,#)of matrices U in the Circular Unitary Ensemble (CUE) of Random Matrix Theory. Exact expressions for any matrix size N are derived for the moments of and Z/Z # , and from these we obtain the asymptotics of the value distributions and cumulants of the re ..."
Abstract

Cited by 85 (15 self)
 Add to MetaCart
We study the characteristic polynomials Z(U,#)of matrices U in the Circular Unitary Ensemble (CUE) of Random Matrix Theory. Exact expressions for any matrix size N are derived for the moments of and Z/Z # , and from these we obtain the asymptotics of the value distributions and cumulants of the real and imaginary parts of log Z as N ##. In the
Probability laws related to the Jacobi theta and Riemann zeta functions, and the Brownian excursions
 Bulletin (New series) of the American Mathematical Society
"... Abstract. This paper reviews known results which connect Riemann’s integral representations of his zeta function, involving Jacobi’s theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to onedimensional ..."
Abstract

Cited by 57 (11 self)
 Add to MetaCart
Abstract. This paper reviews known results which connect Riemann’s integral representations of his zeta function, involving Jacobi’s theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to onedimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these probability laws, and some approximations of Riemann’s zeta function which are related to these laws. Contents
Mean values of Lfunctions and symmetry
 Int. Math. Res. Notices
"... Abstract. Recently Katz and Sarnak introduced the idea of a symmetry group attached to a family of L–functions, and they gave strong evidence that the symmetry group governs many properties of the distribution of zeros of the L–functions. We consider the mean–values of the L–functions and the mollif ..."
Abstract

Cited by 40 (14 self)
 Add to MetaCart
Abstract. Recently Katz and Sarnak introduced the idea of a symmetry group attached to a family of L–functions, and they gave strong evidence that the symmetry group governs many properties of the distribution of zeros of the L–functions. We consider the mean–values of the L–functions and the mollified mean–square of the L–functions and find evidence that these are also governed by the symmetry group. We use recent work of Keating and Snaith to give a complete description of these mean values. We find a connection to the Barnes–Vignéras Γ2–function and to a family of self–similar functions. 1.
On the frequency of vanishing of quadratic twists of modular Lfunctions
 in Number theory for the millennium, I (Urbana, IL, 2000), 301–315, A K Peters
, 2002
"... Abstract. We present theoretical and numerical evidence for a random matrix theoretical approach to a conjecture about vanishings of quadratic twists of certain Lfunctions. In this paper we 1 present some evidence that methods from random matrix theory can give insight into the frequency of vanishi ..."
Abstract

Cited by 38 (15 self)
 Add to MetaCart
Abstract. We present theoretical and numerical evidence for a random matrix theoretical approach to a conjecture about vanishings of quadratic twists of certain Lfunctions. In this paper we 1 present some evidence that methods from random matrix theory can give insight into the frequency of vanishing for quadratic twists of modular Lfunctions. The central question is the following: given a holomorphic newform f with integral coefficients and associated Lfunction Lf(s), for how many fundamental discriminants d with d  ≤ x, does Lf(s, χd), the Lfunction twisted by the real, primitive, Dirichlet character associated with the discriminant d, vanish at the center of the critical strip to order at least 2? This question is of particular interest in the case that the Lfunction is associated with an elliptic curve, in light of the conjecture of Birch and SwinnertonDyer. This case corresponds to weight k = 2. We will focus on this case for most of the paper, though we do make some remarks about higher weights (see (26) and below). Suppose that E/Q is an elliptic curve with associated Lfunction (1) LE(s) = for ℜs> 1. Then, as a consequence of the TaniyamaShimura conjecture, recently solved by Wiles, Taylor, ([W], [TW]), and Breuil, Conrad, and Diamond, LE is entire and satisfies a functional equation n=1 a ∗ n n s
Random matrices and determinantal processes
 Mathematical Statistical Physics, Session LXXXIII: Lecture Notes of the Les Houches Summer School 2005
"... Eigenvalues of random matrices have a rich mathematical structure and are a source of interesting distributions and processes. These distributions are natural statistical models in many problems in quantum physics, [15]. They occur for example, at least conjecturally, in the statistics of spectra of ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
Eigenvalues of random matrices have a rich mathematical structure and are a source of interesting distributions and processes. These distributions are natural statistical models in many problems in quantum physics, [15]. They occur for example, at least conjecturally, in the statistics of spectra of quantized models
Lowlying zeros of families of elliptic curves
, 2006
"... There is a growing body of evidence giving strong evidence that zeros of families of Lfunctions follow distribution laws of eigenvalues of random matrices. This philosophy is known as the random matrix model or the KatzSarnak philosophy. The random matrix model makes predictions for the average di ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
There is a growing body of evidence giving strong evidence that zeros of families of Lfunctions follow distribution laws of eigenvalues of random matrices. This philosophy is known as the random matrix model or the KatzSarnak philosophy. The random matrix model makes predictions for the average distribution of zeros near the central point for families of Lfunctions. We study the lowlying zeros for families of elliptic curve Lfunctions. For these Lfunctions there is special arithmetic interest in any zeros at the central point (by the conjecture of Birch and SwinnertonDyer and the impressive partial results towards resolving the conjecture). We calculate the density of the lowlying zeros for various families of elliptic curves. Our main foci are the family of all elliptic curves and a large family with positive rank. A main challenge has been to obtain results with test functions that are concentrated close to the origin since the central point is a location of great interest. An application is an improvement on the upper bound of the average rank of the family of all elliptic curves. We show that there is an extra contribution to the density of the lowlying zeros from the family with positive rank (presumably from the “extra ” zero at the central point). 1
Random matrix theory and Lfunctions at s =1=2
 Comm. Math Phys
"... random matrix theory, number theory, Lfunctions Recent results of Katz and Sarnak [9,10] suggest that the lowlying zeros of families of Lfunctions display the statistics of the eigenvalues of one of the compact groups of matrices U (N), O(N) or U Sp (2 N). We here explore the link between the valu ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
random matrix theory, number theory, Lfunctions Recent results of Katz and Sarnak [9,10] suggest that the lowlying zeros of families of Lfunctions display the statistics of the eigenvalues of one of the compact groups of matrices U (N), O(N) or U Sp (2 N). We here explore the link between the value distributions of the Lfunctions within these families at the central point s = 1/2 and those of the characteristic polynomials Z (U, 3) of matrices U with respect to averages over SO (2N) and U Sp (2N) at the corresponding point 3 = 0, using techniques previously developed for U (N) in [7]. For any matrix size N we find exact expressions for the moments of Z (U, 0) for each ensemble, and hence calculate the asymptotic (large N) value distributions for Z (U, 0) and log Z (U, 0). The asymptotic results for the integer moments agree precisely with the few corresponding values known for Lfunctions. The value distributions suggest consequences for the nonvanishing of Lfunctions at the central point. 1
Orthogonal polynomial ensembles in probability theory
 Prob. Surv
, 2005
"... Abstract: We survey a number of models from physics, statistical mechanics, probability theory and combinatorics, which are each described in terms of an orthogonal polynomial ensemble. The most prominent example is apparently the Hermite ensemble, the eigenvalue distribution of the Gaussian Unitary ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
Abstract: We survey a number of models from physics, statistical mechanics, probability theory and combinatorics, which are each described in terms of an orthogonal polynomial ensemble. The most prominent example is apparently the Hermite ensemble, the eigenvalue distribution of the Gaussian Unitary Ensemble (GUE), and other wellknown ensembles known in random matrix theory like the Laguerre ensemble for the spectrum of Wishart matrices. In recent years, a number of further interesting models were found to lead to orthogonal polynomial ensembles, among which the corner growth model, directed last passage percolation, the PNG droplet, noncolliding random processes, the length of the longest increasing subsequence of a random permutation, and others. Much attention has been paid to universal classes of asymptotic behaviors of these models in the limit of large particle numbers, in particular the spacings between the particles and the fluctuation behavior of the largest particle. Computer simulations suggest that the connections go even farther
An elementary problem equivalent to the Riemann hypothesis
 Amer. Math. Monthly
"... ABSTRACT. The problem is: Let Hn = n∑ n ≥ 1, that with equality only for n = 1. j=1 1 j d ≤ Hn + exp(Hn)log(Hn), ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
ABSTRACT. The problem is: Let Hn = n∑ n ≥ 1, that with equality only for n = 1. j=1 1 j d ≤ Hn + exp(Hn)log(Hn),