Results 1  10
of
101
Sharing the Cost of Multicast Transmissions
 Journal of Computer and System Sciences
, 2001
"... We investigate costsharing algorithms for multicast transmission. Economic considerations point to two distinct mechanisms, marginal cost and Shapley value, as the two solutions most appropriate in this context. We prove that the former has a natural algorithm that uses only two messages per link o ..."
Abstract

Cited by 249 (18 self)
 Add to MetaCart
We investigate costsharing algorithms for multicast transmission. Economic considerations point to two distinct mechanisms, marginal cost and Shapley value, as the two solutions most appropriate in this context. We prove that the former has a natural algorithm that uses only two messages per link of the multicast tree, while we give evidence that the latter requires a quadratic total number of messages. We also show that the welfare value achieved by an optimal multicast tree is NPhard to approximate within any constant factor, even for boundeddegree networks. The lowerbound proof for the Shapley value uses a novel algebraic technique for bounding from below the number of messages exchanged in a distributed computation; this technique may prove useful in other contexts as well. 1
Bidding and Allocation in Combinatorial Auctions
 In ACM Conference on Electronic Commerce
, 2000
"... When an auction of multiple items is performed, it is often desirable to allow bids on combinations of items, as opposed to only on single items. Such an auction is often called "combinatorial ", and the exponential number of possible combinations results in computational intractability of many a ..."
Abstract

Cited by 244 (11 self)
 Add to MetaCart
When an auction of multiple items is performed, it is often desirable to allow bids on combinations of items, as opposed to only on single items. Such an auction is often called "combinatorial ", and the exponential number of possible combinations results in computational intractability of many aspects regarding such an auction. This paper considers two of these aspects: the bidding language and the allocation algorithm. First we consider which kinds of bids on combinations are allowed and how, i.e. in what language, they are specified. The basic tradeoff is the expressibility of the language versus its simplicity. We consider and formalize several bidding languages and compare their strengths. We prove exponential separations between the expressive power of different languages, and show that one language, "ORbids with phantom items", can polynomially simulate the others. We then consider the problem of determining the best allocation  a problem known to be computationally intractable. We suggest an approach based on Linear Programming (LP) and motivate it. We prove that the LP approach finds an optimal allocation if and only if prices can be attached to single items in the auction. We pinpoint several classes of auctions where this is the case, and suggest greedy and branchandbound heuristics based on LP for other cases. 1
Distributed Rational Decision Making
, 1999
"... Introduction Automated negotiation systems with selfinterested agents are becoming increasingly important. One reason for this is the technology push of a growing standardized communication infrastructureInternet, WWW, NII, EDI, KQML, FIPA, Concordia, Voyager, Odyssey, Telescript, Java, etco ..."
Abstract

Cited by 167 (0 self)
 Add to MetaCart
Introduction Automated negotiation systems with selfinterested agents are becoming increasingly important. One reason for this is the technology push of a growing standardized communication infrastructureInternet, WWW, NII, EDI, KQML, FIPA, Concordia, Voyager, Odyssey, Telescript, Java, etcover which separately designed agents belonging to different organizations can interact in an open environment in realtime and safely carry out transactions. The second reason is strong application pull for computer support for negotiation at the operative decision making level. For example, we are witnessing the advent of small transaction electronic commerce on the Internet for purchasing goods, information, and communication bandwidth [29]. There is also an industrial trend toward virtual enterprises: dynamic alliances of small, agile enterprises which together can take advantage of economies of scale when available (e.g., respond to mor
Flexible Double Auctions for Electronic Commerce: Theory and Implementation
, 1998
"... We consider a general family of auction mechanisms that admit multiple buyers and sellers, and determine marketclearing prices. We analyze the economic incentives facing participants in such auctions, demonstrating that, under some conditions, it is possible to induce truthful revelation of val ..."
Abstract

Cited by 126 (20 self)
 Add to MetaCart
We consider a general family of auction mechanisms that admit multiple buyers and sellers, and determine marketclearing prices. We analyze the economic incentives facing participants in such auctions, demonstrating that, under some conditions, it is possible to induce truthful revelation of values by buyers or sellers, but not both, and for single but not multiunit bids. We also perform a computational analysis of the auctioneer's task, exhibiting efficient algorithms for processing bids and calculating allocations.
eMediator: A Next Generation Electronic Commerce Server
 Computational Intelligence
, 2002
"... This paper presents eMediator, an electronic commerce server prototype that demonstrates ways in which algorithmic support and gametheoretic incentive engineering can jointly improve the efficiency of ecommerce. eAuctionHouse, the configurable auction server, includes a variety of generalized combi ..."
Abstract

Cited by 107 (31 self)
 Add to MetaCart
This paper presents eMediator, an electronic commerce server prototype that demonstrates ways in which algorithmic support and gametheoretic incentive engineering can jointly improve the efficiency of ecommerce. eAuctionHouse, the configurable auction server, includes a variety of generalized combinatorial auctions and exchanges, pricing schemes, bidding languages, mobile agents, and user support for choosing an auction type. We introduce two new logical bidding languages for combinatorial markets: the XOR bidding language and the ORofXORs bidding language. Unlike the traditional OR bidding language, these are fully expressive. They therefore enable the use of the ClarkeGroves pricing mechanism for motivating the bidders to bid truthfully. eAuctionHouse also supports supply/demand curve bidding. eCommitter, the leveled commitment contract optimizer, determines the optimal contract price and decommitting penalties for a variety of leveled commitment contracting mechanisms, taking into account that rational agents will decommit strategically in Nash equilibrium. It also determines the optimal decommitting strategies for any given leveled commitment contract. eExchangeHouse, the safe exchange planner, enables unenforced anonymous exchanges by dividing the exchange into chunks and sequencing those chunks to be delivered safely in alternation between the buyer and the seller.
Achieving BudgetBalance with VickreyBased Payment Schemes in Exchanges
 In Proceedings of the 17th International Joint Conference on Artificial Intelligence
, 2001
"... Generalized Vickrey mechanisms have received wide attention in the literature because they are efficient and strategyproof, i.e. truthful bidding is optimal whatever the bids of other agents. However it is wellknown that it is impossible for an exchange, with multiple buyers and sellers, to be ..."
Abstract

Cited by 97 (18 self)
 Add to MetaCart
Generalized Vickrey mechanisms have received wide attention in the literature because they are efficient and strategyproof, i.e. truthful bidding is optimal whatever the bids of other agents. However it is wellknown that it is impossible for an exchange, with multiple buyers and sellers, to be efficient and budgetbalanced, even putting strategyproofness to one side. A marketmaker in an efficient exchange must make more payments than it collects. We enforce budgetbalance as a hard constraint, and explore payment rules to distribute surplus after an exchange clears to minimize distance to Vickrey payments. Different rules lead to different levels of truthrevelation and efficiency. Experimental and theoretical analysis suggest a simple Threshold scheme, which gives surplus to agents with payments further than a certain threshold value from their Vickrey payments. The scheme appears able to exploit agent uncertainty about bids from other agents to reduce manipulation and boost allocative efficiency in comparison with other simple rules.
Efficient Design with Interdependent Valuations

, 1996
"... We study efficient, BayesNash incentive compatible mechanisms in a social choice setting that allows for informational and allocative externalities. We show that such mechanisms exist only if a congruence condition relating private and social rates of information substitution is satisfied. If signa ..."
Abstract

Cited by 80 (1 self)
 Add to MetaCart
We study efficient, BayesNash incentive compatible mechanisms in a social choice setting that allows for informational and allocative externalities. We show that such mechanisms exist only if a congruence condition relating private and social rates of information substitution is satisfied. If signals are multidimensional, the congruence condition is determined by an integrability constraint, and it can hold only in nongeneric cases such as the private value case or the symmetric case. If signals are onedimensional, the congruence condition reduces to a monotonicity constraint and it can be generically satisfied. We apply the results to the study of multiobject auctions, and we discuss why such auctions cannot be reduced to onedimensional models without loss of generality.
Truthful randomized mechanisms for combinatorial auctions
 IN STOC
, 2006
"... We design two computationallyefficient incentivecompatible mechanisms for combinatorial auctions with general bidder preferences. Both mechanisms are randomized, and are incentivecompatible in the universal sense. This is in contrast to recent previous work that only addresses the weaker notion o ..."
Abstract

Cited by 79 (15 self)
 Add to MetaCart
We design two computationallyefficient incentivecompatible mechanisms for combinatorial auctions with general bidder preferences. Both mechanisms are randomized, and are incentivecompatible in the universal sense. This is in contrast to recent previous work that only addresses the weaker notion of incentive compatibility in expectation. The first mechanism obtains an O(pm)approximation of the optimal social welfare for arbitrary bidder valuations  this is the best approximation possible in polynomial time. The second one obtains an O(log2 m) approximation for a subclass of bidder valuations that includes all submodular bidders. This improves over the best previously obtained incentivecompatible mechanism for this class which only provides an O(pm)approximation.
The Effect of Falsename Bids in Combinatorial Auctions: New Fraud in Internet Auctions
 Games and Economic Behavior
, 2003
"... We examine the effect of falsename bids on combinatorial auction protocols. Falsename bids are bids submitted by a single bidder using multiple identifiers such as multiple email addresses. The obtained results are summarized as follows: 1) The VickreyClarkeGroves (VCG) mechanism, which is strat ..."
Abstract

Cited by 55 (13 self)
 Add to MetaCart
We examine the effect of falsename bids on combinatorial auction protocols. Falsename bids are bids submitted by a single bidder using multiple identifiers such as multiple email addresses. The obtained results are summarized as follows: 1) The VickreyClarkeGroves (VCG) mechanism, which is strategyproof and Pareto efficient when there exists no falsename bids, is not falsenameproof, 2) There exists no falsenameproof combinatorial auction protocol that satisfies Pareto efficiency, 3) One sufficient condition where the VCG mechanism is falsenameproof is identified, i.e., the concavity of a surplus function over bidders.