Results 1  10
of
298
Maxmargin Markov networks
, 2003
"... In typical classification tasks, we seek a function which assigns a label to a single object. Kernelbased approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ..."
Abstract

Cited by 436 (10 self)
 Add to MetaCart
In typical classification tasks, we seek a function which assigns a label to a single object. Kernelbased approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ability to use highdimensional feature spaces, and from their strong theoretical guarantees. However, many realworld tasks involve sequential, spatial, or structured data, where multiple labels must be assigned. Existing kernelbased methods ignore structure in the problem, assigning labels independently to each object, losing much useful information. Conversely, probabilistic graphical models, such as Markov networks, can represent correlations between labels, by exploiting problem structure, but cannot handle highdimensional feature spaces, and lack strong theoretical generalization guarantees. In this paper, we present a new framework that combines the advantages of both approaches: Maximum margin Markov (M 3) networks incorporate both kernels, which efficiently deal with highdimensional features, and the ability to capture correlations in structured data. We present an efficient algorithm for learning M 3 networks based on a compact quadratic program formulation. We provide a new theoretical bound for generalization in structured domains. Experiments on the task of handwritten character recognition and collective hypertext classification demonstrate very significant gains over previous approaches. 1
Large margin methods for structured and interdependent output variables
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract

Cited by 372 (11 self)
 Add to MetaCart
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary issue of designing classification algorithms that can deal with more complex outputs, such as trees, sequences, or sets. More generally, we consider problems involving multiple dependent output variables, structured output spaces, and classification problems with class attributes. In order to accomplish this, we propose to appropriately generalize the wellknown notion of a separation margin and derive a corresponding maximummargin formulation. While this leads to a quadratic program with a potentially prohibitive, i.e. exponential, number of constraints, we present a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains involving different types of output spaces emphasize the breadth and generality of our approach.
Distance metric learning for large margin nearest neighbor classification
 In NIPS
, 2006
"... We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven ..."
Abstract

Cited by 326 (10 self)
 Add to MetaCart
We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to significant improvements in kNN classification—for example, achieving a test error rate of 1.3 % on the MNIST handwritten digits. As in support vector machines (SVMs), the learning problem reduces to a convex optimization based on the hinge loss. Unlike learning in SVMs, however, our framework requires no modification or extension for problems in multiway (as opposed to binary) classification. 1
Support vector machine learning for interdependent and structured output spaces
 In ICML
, 2004
"... Learning general functional dependencies is one of the main goals in machine learning. Recent progress in kernelbased methods has focused on designing flexible and powerful input representations. This paper addresses the complementary issue of problems involving complex outputs suchas multiple depe ..."
Abstract

Cited by 311 (17 self)
 Add to MetaCart
Learning general functional dependencies is one of the main goals in machine learning. Recent progress in kernelbased methods has focused on designing flexible and powerful input representations. This paper addresses the complementary issue of problems involving complex outputs suchas multiple dependent output variables and structured output spaces. We propose to generalize multiclass Support Vector Machine learning in a formulation that involves features extracted jointly from inputs and outputs. The resulting optimization problem is solved efficiently by a cutting plane algorithm that exploits the sparseness and structural decomposition of the problem. We demonstrate the versatility and effectiveness of our method on problems ranging from supervised grammar learning and namedentity recognition, to taxonomic text classification and sequence alignment. 1.
Online passiveaggressive algorithms
 JMLR
, 2006
"... We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the nonrealizable case. The end result is new alg ..."
Abstract

Cited by 293 (22 self)
 Add to MetaCart
We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the nonrealizable case. The end result is new algorithms and accompanying loss bounds for hingeloss regression and uniclass. We also get refined loss bounds for previously studied classification algorithms. 1
Ultraconservative Online Algorithms for Multiclass Problems
 Journal of Machine Learning Research
, 2001
"... In this paper we study online classification algorithms for multiclass problems in the mistake bound model. The hypotheses we use maintain one prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarityscore between each prototype and the input instance and th ..."
Abstract

Cited by 249 (23 self)
 Add to MetaCart
In this paper we study online classification algorithms for multiclass problems in the mistake bound model. The hypotheses we use maintain one prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarityscore between each prototype and the input instance and then sets the predicted label to be the index of the prototype achieving the highest similarity. To design and analyze the learning algorithms in this paper we introduce the notion of ultraconservativeness. Ultraconservative algorithms are algorithms that update only the prototypes attaining similarityscores which are higher than the score of the correct label's prototype. We start by describing a family of additive ultraconservative algorithms where each algorithm in the family updates its prototypes by finding a feasible solution for a set of linear constraints that depend on the instantaneous similarityscores. We then discuss a specific online algorithm that seeks a set of prototypes which have a small norm. The resulting algorithm, which we term MIRA (for Margin Infused Relaxed Algorithm) is ultraconservative as well. We derive mistake bounds for all the algorithms and provide further analysis of MIRA using a generalized notion of the margin for multiclass problems.
Svmknn: Discriminative nearest neighbor classification for visual category recognition
 in CVPR
, 2006
"... We consider visual category recognition in the framework of measuring similarities, or equivalently perceptual distances, to prototype examples of categories. This approach is quite flexible, and permits recognition based on color, texture, and particularly shape, in a homogeneous framework. While n ..."
Abstract

Cited by 210 (7 self)
 Add to MetaCart
We consider visual category recognition in the framework of measuring similarities, or equivalently perceptual distances, to prototype examples of categories. This approach is quite flexible, and permits recognition based on color, texture, and particularly shape, in a homogeneous framework. While nearest neighbor classifiers are natural in this setting, they suffer from the problem of high variance (in biasvariance decomposition) in the case of limited sampling. Alternatively, one could use support vector machines but they involve timeconsuming optimization and computation of pairwise distances. We propose a hybrid of these two methods which deals naturally with the multiclass setting, has reasonable computational complexity both in training and at run time, and yields excellent results in practice. The basic idea is to find close neighbors to a query sample and train a local support vector machine that preserves the distance function on the collection of neighbors. Our method can be applied to large, multiclass data sets for which it outperforms nearest neighbor and support vector machines, and remains efficient when the problem becomes intractable for support vector machines. A wide variety of distance functions can be used and our experiments show stateoftheart performance on a number of benchmark data sets for shape and texture classification (MNIST, USPS, CUReT) and object recognition (Caltech101). On Caltech101 we achieved a correct classification rate of 59.05%(±0.56%) at 15 training images per class, and 66.23%(±0.48%) at 30 training images. 1.
In defense of onevsall classification
 Journal of Machine Learning Research
, 2004
"... Editor: John ShaweTaylor We consider the problem of multiclass classification. Our main thesis is that a simple “onevsall ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are welltuned regularized classifiers such as support vector machines. This the ..."
Abstract

Cited by 202 (0 self)
 Add to MetaCart
Editor: John ShaweTaylor We consider the problem of multiclass classification. Our main thesis is that a simple “onevsall ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are welltuned regularized classifiers such as support vector machines. This thesis is interesting in that it disagrees with a large body of recent published work on multiclass classification. We support our position by means of a critical review of the existing literature, a substantial collection of carefully controlled experimental work, and theoretical arguments.
T.: Hierarchical document categorization with support vector machines
 In: Proceedings of the 13th Conference on Information and Knowledge Management
, 2004
"... Automatically categorizing documents into predefined topic hierarchies or taxonomies is a crucial step in knowledge and content management. Standard machine learning techniques like Support Vector Machines and related large margin methods have been successfully applied for this task, albeit the fac ..."
Abstract

Cited by 113 (4 self)
 Add to MetaCart
Automatically categorizing documents into predefined topic hierarchies or taxonomies is a crucial step in knowledge and content management. Standard machine learning techniques like Support Vector Machines and related large margin methods have been successfully applied for this task, albeit the fact that they ignore the interclass relationships. In this paper, we propose a novel hierarchical classification method that generalizes Support Vector Machine learning and that is based on discriminant functions that are structured in a way that mirrors the class hierarchy. Our method can work with arbitrary, not necessarily singly connected taxonomies and can deal with taskspecific loss functions. All parameters are learned jointly by optimizing a common objective function corresponding to a regularized upper bound on the empirical loss. We present experimental results on the WIPOalpha patent collection to show the competitiveness of our approach.
Everything Old Is New Again: A Fresh Look at Historical Approaches
 in Machine Learning. PhD thesis, MIT
, 2002
"... 2 Everything Old Is New Again: A Fresh Look at Historical ..."
Abstract

Cited by 88 (6 self)
 Add to MetaCart
2 Everything Old Is New Again: A Fresh Look at Historical