Results 1  10
of
140
Greedy optimal homotopy and homology generators
 Proc. 16th Ann. ACMSIAM Symp. Discrete Algorithms
, 2005
"... Abstract We describe simple greedy algorithms to construct the shortest set of loops that generates either the fundamental group (with a given basepoint) or the first homology group (over any fixed coefficient field) of any oriented 2manifold. In particular, we show that the shortest set of loops t ..."
Abstract

Cited by 97 (11 self)
 Add to MetaCart
Abstract We describe simple greedy algorithms to construct the shortest set of loops that generates either the fundamental group (with a given basepoint) or the first homology group (over any fixed coefficient field) of any oriented 2manifold. In particular, we show that the shortest set of loops that generate the fundamental group of any oriented combinatorial 2manifold, with any given basepoint, can be constructed in O(n log n) time using a straightforward application of Dijkstra's shortest path algorithm. This solves an open problem of Colin de Verdi`ere and Lazarus.
Minimum Cuts in NearLinear Time
, 1999
"... We significantly improve known time bounds for solving the minimum cut problem on undirected graphs. We use a "semiduality" between minimum cuts and maximum spanning tree packings combined with our previously developed random sampling techniques. We give a randomized (Monte Carlo) algorit ..."
Abstract

Cited by 86 (12 self)
 Add to MetaCart
We significantly improve known time bounds for solving the minimum cut problem on undirected graphs. We use a "semiduality" between minimum cuts and maximum spanning tree packings combined with our previously developed random sampling techniques. We give a randomized (Monte Carlo) algorithm that finds a minimum cut in an medge, nvertex graph with high probability in O(m log³ n) time. We also give a simpler randomized algorithm that finds all minimum cuts with high probability in O(n² log n) time. This variant has an optimal RNC parallelization. Both variants improve on the previous best time bound of O(n² log³ n). Other applications of the treepacking approach are new, nearly tight bounds on the number of near minimum cuts a graph may have and a new data structure for representing them in a spaceefficient manner.
Cp(graph): Introducing a graph computation domain in constraint programming
 In CP2005 Proceedings
, 2005
"... Abstract. In an increasing number of domains such as bioinformatics, combinatorial graph problems arise. We propose a novel way to solve these problems, mainly those that can be translated to constrained subgraph finding. Our approach extends constraint programming by introducing CP(Graph), a new co ..."
Abstract

Cited by 51 (13 self)
 Add to MetaCart
(Show Context)
Abstract. In an increasing number of domains such as bioinformatics, combinatorial graph problems arise. We propose a novel way to solve these problems, mainly those that can be translated to constrained subgraph finding. Our approach extends constraint programming by introducing CP(Graph), a new computation domain focused on graphs including a new type of variable: graph domain variables as well as constraints over these variables and their propagators. These constraints are subdivided into kernel constraints and additional constraints formulated as networks of kernel constraints. For some of these constraints a dedicated global constraint and its associated propagator are sketched. CP(Graph) is integrated with finite domain and finite sets computation domains, allowing the combining of constraints of these domains with graph constraints. A prototype of CP(Graph) built over finite domains and finite sets in Oz is presented. And we show that a problem of biochemical network analysis can be very simply described and solved within CP(Graph). 1
Dynamic Generators of Topologically Embedded Graphs
, 2003
"... We provide a data structure for maintaining an embedding of a graph on a surface (represented combinatorially by a permutation of edges around each vertex) and computing generators of the fundamental group of the surface, in amortized time O(logn + logg(loglogg) 3) per update on a surface of genus g ..."
Abstract

Cited by 47 (1 self)
 Add to MetaCart
We provide a data structure for maintaining an embedding of a graph on a surface (represented combinatorially by a permutation of edges around each vertex) and computing generators of the fundamental group of the surface, in amortized time O(logn + logg(loglogg) 3) per update on a surface of genus g; we can also test orientability of the surface in the same time, and maintain the minimum and maximum spanning tree of the graph in time O(log n + log 4 g) per update. Our data structure allows edge insertion and deletion as well as the dual operations; these operations may implicitly change the genus of the embedding surface. We apply similar ideas to improve the constant factor in a separator theorem for lowgenus graphs, and to find in linear time a treedecomposition of lowgenus lowdiameter graphs.
A Fully Dynamic Algorithm for Maintaining the Transitive Closure
 In Proc. 31st ACM Symposium on Theory of Computing (STOC'99
, 1999
"... This paper presents an efficient fully dynamic graph algorithm for maintaining the transitive closure of a directed graph. The algorithm updates the adjacency matrix of the transitive closure with each update to the graph. Hence, each reachability query of the form "Is there a directed path fro ..."
Abstract

Cited by 47 (1 self)
 Add to MetaCart
(Show Context)
This paper presents an efficient fully dynamic graph algorithm for maintaining the transitive closure of a directed graph. The algorithm updates the adjacency matrix of the transitive closure with each update to the graph. Hence, each reachability query of the form "Is there a directed path from i to j?" can be answered in O(1) time. The algorithm is randomized; it is correct when answering yes, but has O(1/n^c) probability of error when answering no, for any constant c. In acyclic graphs, worst case update time is O(n^2). In general graphs, update time is O(n^(2+alpha)), where alpha = min {.26, maximum size of a strongly connected component}. The space complexity of the algorithm is O(n^2).
Logarithmic lower bounds in the cellprobe model
 SIAM Journal on Computing
"... Abstract. We develop a new technique for proving cellprobe lower bounds on dynamic data structures. This enables us to prove Ω(lg n) bounds, breaking a longstanding barrier of Ω(lg n/lg lg n). We can also prove the first Ω(lgB n) lower bound in the external memory model, without assumptions on the ..."
Abstract

Cited by 43 (4 self)
 Add to MetaCart
(Show Context)
Abstract. We develop a new technique for proving cellprobe lower bounds on dynamic data structures. This enables us to prove Ω(lg n) bounds, breaking a longstanding barrier of Ω(lg n/lg lg n). We can also prove the first Ω(lgB n) lower bound in the external memory model, without assumptions on the data structure. We use our technique to prove better bounds for the partialsums problem, dynamic connectivity and (by reductions) other dynamic graph problems. Our proofs are surprisingly simple and clean. The bounds we obtain are often optimal, and lead to a nearly complete understanding of the problems. We also present new matching upper bounds for the partialsums problem. Key words. cellprobe complexity, lower bounds, data structures, dynamic graph problems, partialsums problem AMS subject classification. 68Q17
Efficient and simple generation of random simple connected graphs with prescribed degree sequence
 in The Eleventh International Computing and Combinatorics Conference, Aug. 2005, kumming
, 2005
"... degree sequence ..."
(Show Context)
Improved Dynamic Reachability Algorithms for Directed Graphs
, 2002
"... We obtain several new dynamic algorithms for maintaining the transitive closure of a directed graph, and several other algorithms for answering reachability queries without explicitly maintaining a transitive closure matrix. Among our algorithms are: (i) A decremental algorithm for maintaining the ..."
Abstract

Cited by 31 (5 self)
 Add to MetaCart
(Show Context)
We obtain several new dynamic algorithms for maintaining the transitive closure of a directed graph, and several other algorithms for answering reachability queries without explicitly maintaining a transitive closure matrix. Among our algorithms are: (i) A decremental algorithm for maintaining the transitive closure of a directed graph, through an arbitrary sequence of edge deletions, in O(mn) total expected time, essentially the time needed for computing the transitive closure of the initial graph. Such a result was previously known only for acyclic graphs.
Cell probe complexity  a survey
 In 19th Conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 1999. Advances in Data Structures Workshop
"... The cell probe model is a general, combinatorial model of data structures. We give a survey of known results about the cell probe complexity of static and dynamic data structure problems, with an emphasis on techniques for proving lower bounds. 1 ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
(Show Context)
The cell probe model is a general, combinatorial model of data structures. We give a survey of known results about the cell probe complexity of static and dynamic data structure problems, with an emphasis on techniques for proving lower bounds. 1
Kinetic Connectivity for Unit Disks
 In Proc. 16th Annu. ACM Sympos. Comput. Geom
, 2000
"... We describe a kinetic data structure (KDS) that maintains the connected components of the union of a set of unitradius disks moving in the plane. We assume that the motion of each disk can be specified by a lowdegree algebraic trajectory; this trajectory, however, can be modified in an online ..."
Abstract

Cited by 28 (7 self)
 Add to MetaCart
(Show Context)
We describe a kinetic data structure (KDS) that maintains the connected components of the union of a set of unitradius disks moving in the plane. We assume that the motion of each disk can be specified by a lowdegree algebraic trajectory; this trajectory, however, can be modified in an online fashion. While the disks move continuously, their connectivity changes at discrete times. Our main result is an O(n) space data structure that takes O(log n/ log log n) time per connectivity query of the form "are disks A and B in the same connected component?" A straightforward approach based on dynamically maintaining the overlap graph requires## n 2 ) space. Our data structure requires only linear space and must deal with O(n 2+# ) updates in the worst case, each requiring O(log 2 n) amortized time. This number of updates is close to optimal, since a set of n moving unit disks can undergo## n 2 ) connectivity changes. 1 Introduction Motivated by applications in mobile ...