Results 1 
6 of
6
Relational Reasoning about Contexts
 HIGHER ORDER OPERATIONAL TECHNIQUES IN SEMANTICS, PUBLICATIONS OF THE NEWTON INSTITUTE
, 1998
"... ..."
From Settheoretic Coinduction to Coalgebraic Coinduction: some results, some problems
, 1999
"... ..."
Using synthetic domain theory to prove operational properties of a polymorphic programming language based on strictness
 Manuscript
"... We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful polymorphic programming language, given by a novel extension of intuitionistic linear type theory based on strictness. By applying the model, we establish the fundamental operational properties of the language. 1.
Operational domain theory and topology of a sequential language
 In Proceedings of the 20th Annual IEEE Symposium on Logic In Computer Science
, 2005
"... A number of authors have exported domaintheoretic techniques from denotational semantics to the operational study of contextual equivalence and order. We further develop this, and, moreover, we additionally export topological techniques. In particular, we work with an operational notion of compact ..."
Abstract

Cited by 10 (6 self)
 Add to MetaCart
A number of authors have exported domaintheoretic techniques from denotational semantics to the operational study of contextual equivalence and order. We further develop this, and, moreover, we additionally export topological techniques. In particular, we work with an operational notion of compact set and show that total programs with values on certain types are uniformly continuous on compact sets of total elements. We apply this and other conclusions to prove the correctness of nontrivial programs that manipulate infinite data. What is interesting is that the development applies to sequential programming languages, in addition to languages with parallel features. 1
Themes in Final Semantics
 Dipartimento di Informatica, Università di
, 1998
"... C'era una volta un re seduto in canap`e, che disse alla regina raccontami una storia. La regina cominci`o: "C'era una volta un re seduto in canap`e ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
C'era una volta un re seduto in canap`e, che disse alla regina raccontami una storia. La regina cominci`o: "C'era una volta un re seduto in canap`e
Coinductive Characterizations of Applicative Structures
 MATH. STRUCTURES IN COMP. SCI. 9(4):403–435
, 1998
"... We discuss new ways of characterizing, as maximal fixed points of monotone operators, observational congruences on terms and, more in general, equivalences on applicative structures. These characterizations naturally induce new forms of coinduction principles, for reasoning on program equivalences, ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We discuss new ways of characterizing, as maximal fixed points of monotone operators, observational congruences on terms and, more in general, equivalences on applicative structures. These characterizations naturally induce new forms of coinduction principles, for reasoning on program equivalences, which are not based on Abramsky's applicative bisimulation. We discuss in particular, what we call, the cartesian coinduction principle, which arises when we exploit the elementary observation that functional behaviours can be expressed as cartesian graphs. Using the paradigm of final semantics, the soundness of this principle over an applicative structure can be expressed easily by saying that the applicative structure can be construed as a strongly extensional coalgebra for the functor (P( \Theta )) \Phi (P( \Theta )). In this paper, we present two general methods for showing the soundenss of this principle. The first applies to approximable applicative structures. Many c.p.o. models in...