Results 1  10
of
37
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 319 (33 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided. Key words. global optimization, theory of moments and positive polynomials, semidefinite programming AMS subject classifications. 90C22, 90C25 PII. S1052623400366802 1.
Semidefinite Programming Relaxations for Semialgebraic Problems
, 2001
"... A hierarchy of convex relaxations for semialgebraic problems is introduced. For questions reducible to a finite number of polynomial equalities and inequalities, it is shown how to construct a complete family of polynomially sized semidefinite programming conditions that prove infeasibility. The mai ..."
Abstract

Cited by 225 (19 self)
 Add to MetaCart
A hierarchy of convex relaxations for semialgebraic problems is introduced. For questions reducible to a finite number of polynomial equalities and inequalities, it is shown how to construct a complete family of polynomially sized semidefinite programming conditions that prove infeasibility. The main tools employed are a semidefinite programming formulation of the sum of squares decomposition for multivariate polynomials, and some results from real algebraic geometry. The techniques provide a constructive approach for finding bounded degree solutions to the Positivstellensatz, and are illustrated with examples from diverse application fields.
Solving Systems of Polynomial Equations
 American Mathematical Society, CBMS Regional Conferences Series, No 97
, 2002
"... Abstract. One of the most classical problems of mathematics is to solve systems of polynomial equations in several unknowns. Today, polynomial models are ubiquitous and widely applied across the sciences. They arise in robotics, coding theory, optimization, mathematical biology, computer vision, gam ..."
Abstract

Cited by 145 (10 self)
 Add to MetaCart
Abstract. One of the most classical problems of mathematics is to solve systems of polynomial equations in several unknowns. Today, polynomial models are ubiquitous and widely applied across the sciences. They arise in robotics, coding theory, optimization, mathematical biology, computer vision, game theory, statistics, machine learning, control theory, and numerous other areas. The set of solutions to a system of polynomial equations is an algebraic variety, the basic object of algebraic geometry. The algorithmic study of algebraic varieties is the central theme of computational algebraic geometry. Exciting recent developments in symbolic algebra and numerical software for geometric calculations have revolutionized the field, making formerly inaccessible problems tractable, and providing fertile ground for experimentation and conjecture. The first half of this book furnishes an introduction and represents a snapshot of the state of the art regarding systems of polynomial equations. Afficionados of the wellknown text books by Cox, Little, and O’Shea will find familiar themes in the first five chapters: polynomials in one variable, Gröbner
A comparison of the SheraliAdams, LovászSchrijver and Lasserre relaxations for 01 programming
 Mathematics of Operations Research
, 2001
"... ..."
Convex Nondifferentiable Optimization: A Survey Focussed On The Analytic Center Cutting Plane Method.
, 1999
"... We present a survey of nondifferentiable optimization problems and methods with special focus on the analytic center cutting plane method. We propose a selfcontained convergence analysis, that uses the formalism of the theory of selfconcordant functions, but for the main results, we give direct pr ..."
Abstract

Cited by 53 (2 self)
 Add to MetaCart
We present a survey of nondifferentiable optimization problems and methods with special focus on the analytic center cutting plane method. We propose a selfcontained convergence analysis, that uses the formalism of the theory of selfconcordant functions, but for the main results, we give direct proofs based on the properties of the logarithmic function. We also provide an in depth analysis of two extensions that are very relevant to practical problems: the case of multiple cuts and the case of deep cuts. We further examine extensions to problems including feasible sets partially described by an explicit barrier function, and to the case of nonlinear cuts. Finally, we review several implementation issues and discuss some applications.
Globally optimal estimates for geometric reconstruction problems
 In ICCV
, 2005
"... We introduce a framework for computing statistically optimal estimates of geometric reconstruction problems. While traditional algorithms often suffer from either local minima or nonoptimality or a combination of both we pursue the goal of achieving global solutions of the statistically optimal c ..."
Abstract

Cited by 43 (11 self)
 Add to MetaCart
We introduce a framework for computing statistically optimal estimates of geometric reconstruction problems. While traditional algorithms often suffer from either local minima or nonoptimality or a combination of both we pursue the goal of achieving global solutions of the statistically optimal costfunction. Our approach is based on a hierarchy of convex relaxations to solve nonconvex optimization problems with polynomials. These convex relaxations generate a monotone sequence of lower bounds and we show how one can detect whether the global optimum is attained at a given relaxation. The technique is applied to a number of classical vision problems: triangulation, camera pose, homography estimation and last, but not least, epipolar geometry estimation. Experimental validation on both synthetic and real data is provided. In practice, only a few relaxations are needed for attaining the global optimum. 1
Robust Optimization for Unconstrained Simulationbased Problems
"... In engineering design, an optimized solution often turns out to be suboptimal, when errors are encountered. While the theory of robust convex optimization has taken significant strides over the past decade, all approaches fail if the underlying cost function is not explicitly given; it is even worse ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
In engineering design, an optimized solution often turns out to be suboptimal, when errors are encountered. While the theory of robust convex optimization has taken significant strides over the past decade, all approaches fail if the underlying cost function is not explicitly given; it is even worse if the cost function is nonconvex. In this work, we present a robust optimization method, which is suited for unconstrained problems with a nonconvex cost function as well as for problems based on simulations such as large PDE solvers, response surface, and kriging metamodels. Moreover, this technique can be employed for most realworld problems, because it operates directly on the response surface and does not assume any specific structure of the problem. We present this algorithm along with the application to an actual engineering problem in electromagnetic multiplescattering of aperiodically arranged dielectrics, relevant to nanophotonic design. The corresponding objective function is highly nonconvex and resides in a 100dimensional design space. Starting from an “optimized ” design, we report a robust solution with a significantly lower worst case cost, while maintaining optimality. We further generalize this algorithm to address a nonconvex optimization problem under both implementation errors and parameter uncertainties.
Some controls applications of sum of squares programming
 In Proceedings of the Conference on Decision and Control
, 2003
"... Summary. We consider nonlinear systems with polynomial vector fields and pose two classes of system theoretic problems that may be solved by sum of squares programming. The first is disturbance analysis using three different norms to bound the reachable set. The second is the synthesis of a polynomi ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
Summary. We consider nonlinear systems with polynomial vector fields and pose two classes of system theoretic problems that may be solved by sum of squares programming. The first is disturbance analysis using three different norms to bound the reachable set. The second is the synthesis of a polynomial state feedback controller to enlarge the provable region of attraction. We also outline a variant of the state feedback synthesis for handling systems with input saturation. Both classes of problems are demonstrated using twostate nonlinear systems. 1
Dynamic Network Utility Maximization with Delivery Contracts
, 2007
"... We consider a multiperiod variation of the network utility maximization problem that includes delivery constraints. We allow the flow utilities, link capacities and routing matrices to vary over time, and we introduce the concept of delivery contracts, which couple the flow rates across time. We de ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
We consider a multiperiod variation of the network utility maximization problem that includes delivery constraints. We allow the flow utilities, link capacities and routing matrices to vary over time, and we introduce the concept of delivery contracts, which couple the flow rates across time. We describe a distributed algorithm, based on dual decomposition, that solves this problem when all data is known ahead of time. We briefly describe a heuristic, based on model predictive control, for approximately solving a variation on the problem, in which the data are not known ahead of time. The formulation and algorithms are illustrated with numerical examples. 1