Results 1  10
of
40
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 320 (33 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided. Key words. global optimization, theory of moments and positive polynomials, semidefinite programming AMS subject classifications. 90C22, 90C25 PII. S1052623400366802 1.
A semidefinite framework for trust region subproblems with applications to large scale minimization
 Math. Programming
, 1997
"... This is an abbreviated revision of the University of Waterloo research report CORR 9432. y ..."
Abstract

Cited by 59 (8 self)
 Add to MetaCart
This is an abbreviated revision of the University of Waterloo research report CORR 9432. y
On Lagrangian relaxation of quadratic matrix constraints
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equ ..."
Abstract

Cited by 50 (19 self)
 Add to MetaCart
Abstract. Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent to semidefinite programming relaxations. For several special cases of QQP, e.g., convex programs and trust region subproblems, the Lagrangian relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective. In this paper we consider a certain QQP where the quadratic constraints correspond to the matrix orthogonality condition XXT = I. For this problem we show that the Lagrangian dual based on relaxing the constraints XXT = I and the seemingly redundant constraints XT X = I has a zero duality gap. This result has natural applications to quadratic assignment and graph partitioning problems, as well as the problem of minimizing the weighted sum of the largest eigenvalues of a matrix. We also show that the technique of relaxing quadratic matrix constraints can be used to obtain a strengthened semidefinite relaxation for the maxcut problem. Key words. Lagrangian relaxations, quadratically constrained quadratic programs, semidefinite programming, quadratic assignment, graph partitioning, maxcut problems
Cones Of Matrices And Successive Convex Relaxations Of Nonconvex Sets
, 2000
"... . Let F be a compact subset of the ndimensional Euclidean space R n represented by (finitely or infinitely many) quadratic inequalities. We propose two methods, one based on successive semidefinite programming (SDP) relaxations and the other on successive linear programming (LP) relaxations. Each ..."
Abstract

Cited by 49 (20 self)
 Add to MetaCart
. Let F be a compact subset of the ndimensional Euclidean space R n represented by (finitely or infinitely many) quadratic inequalities. We propose two methods, one based on successive semidefinite programming (SDP) relaxations and the other on successive linear programming (LP) relaxations. Each of our methods generates a sequence of compact convex subsets C k (k = 1, 2, . . . ) of R n such that (a) the convex hull of F # C k+1 # C k (monotonicity), (b) # # k=1 C k = the convex hull of F (asymptotic convergence). Our methods are extensions of the corresponding LovaszSchrijver liftandproject procedures with the use of SDP or LP relaxation applied to general quadratic optimization problems (QOPs) with infinitely many quadratic inequality constraints. Utilizing descriptions of sets based on cones of matrices and their duals, we establish the exact equivalence of the SDP relaxation and the semiinfinite convex QOP relaxation proposed originally by Fujie and Kojima. Using th...
SEMIDEFINITE PROGRAMMING RELAXATIONS FOR THE GRAPH PARTITIONING PROBLEM
, 1999
"... A new semidefinite programming, SDP, relaxation for the general graph partitioning problem, GP, is derived. The relaxation arises from the dual of the (homogenized) Lagrangian dual of an appropriate quadratic representation of GP. The quadratic representation includes a representation of the 0,1 co ..."
Abstract

Cited by 27 (8 self)
 Add to MetaCart
A new semidefinite programming, SDP, relaxation for the general graph partitioning problem, GP, is derived. The relaxation arises from the dual of the (homogenized) Lagrangian dual of an appropriate quadratic representation of GP. The quadratic representation includes a representation of the 0,1 constraints in GP. The special structure of the relaxation is exploited in order to project onto the minimal face of the cone of positive semidefinite matrices which contains the feasible set. This guarantees that the Slater constraint qualification holds, which allows for a numerically stable primaldual interiorpoint solution technique. A gangster operator is the key to providing an efficient representation of the constraints in the relaxation. An incomplete preconditioned conjugate gradient method is used for solving the large linear systems which arise when finding the Newton direction. Only dual feasibility is enforced, which results in the desired lower bounds, but avoids the expensive primal feasibility calculations.
Approximation bounds for quadratic optimization with homogeneous quadratic constraints
 SIAM J. Optim
, 2007
"... Abstract. We consider the NPhard problem of finding a minimum norm vector in ndimensional real or complex Euclidean space, subject to m concave homogeneous quadratic constraints. We show that a semidefinite programming (SDP) relaxation for this nonconvex quadratically constrained quadratic program ..."
Abstract

Cited by 23 (12 self)
 Add to MetaCart
Abstract. We consider the NPhard problem of finding a minimum norm vector in ndimensional real or complex Euclidean space, subject to m concave homogeneous quadratic constraints. We show that a semidefinite programming (SDP) relaxation for this nonconvex quadratically constrained quadratic program (QP) provides an O(m 2) approximation in the real case and an O(m) approximation in the complex case. Moreover, we show that these bounds are tight up to a constant factor. When the Hessian of each constraint function is of rank 1 (namely, outer products of some given socalled steering vectors) and the phase spread of the entries of these steering vectors are bounded away from π/2, we establish a certain “constant factor ” approximation (depending on the phase spread but independent of m and n) for both the SDP relaxation and a convex QP restriction of the original NPhard problem. Finally, we consider a related problem of finding a maximum norm vector subject to m convex homogeneous quadratic constraints. We show that an SDP relaxation for this nonconvex QP provides an O(1 / ln(m)) approximation, which is analogous to a result of Nemirovski et al. [Math. Program., 86 (1999), pp. 463–473] for the real case. Key words. semidefinite programming relaxation, nonconvex quadratic optimization, approximation bound
Strong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints
 SIAM Journal on Optimization
"... Abstract. We consider the problem of minimizing an indefinite quadratic function subject to two quadratic inequality constraints. When the problem is defined over the complex plane we show that strong duality holds and obtain necessary and sufficient optimality conditions. We then develop a connecti ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
Abstract. We consider the problem of minimizing an indefinite quadratic function subject to two quadratic inequality constraints. When the problem is defined over the complex plane we show that strong duality holds and obtain necessary and sufficient optimality conditions. We then develop a connection between the image of the real and complex spaces under a quadratic mapping, which together with the results in the complex case lead to a condition that ensures strong duality in the real setting. Preliminary numerical simulations suggest that for random instances of the extended trust region subproblem, the sufficient condition is satisfied with a high probability. Furthermore, we show that the sufficient condition is always satisfied in two classes of nonconvex quadratic problems. Finally, we discuss an application of our results to robust least squares problems.
InteriorPoint Methods for Linear Optimization
, 2000
"... Everyone with some background in Mathematics knows how to solve a system of linear equalities, since it is the basic subject in Linear Algebra. In many practical problems, however, also inequalities play a role. For example, a budget usually may not be larger than some specified amount. In such situ ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
Everyone with some background in Mathematics knows how to solve a system of linear equalities, since it is the basic subject in Linear Algebra. In many practical problems, however, also inequalities play a role. For example, a budget usually may not be larger than some specified amount. In such situations one may end up with a system of linear relations that not only contains equalities but also inequalities. Solving such a system requires methods and theory that go beyond the standard Mathematical knowledge. Nevertheless the topic has a rich history and is tightly related to the important topic of Linear Optimization, where the object is to nd the optimal (minimal or maximal) value of a linear function subject to linear constraints on the variables; the constraints may be either equality or inequality constraints. Both from a theoretical and computational point of view both topics are equivalent. In this chapter we describe the ideas underlying a new class of solution methods...