Results 1  10
of
75
Truthful randomized mechanisms for combinatorial auctions
 IN STOC
, 2006
"... We design two computationallyefficient incentivecompatible mechanisms for combinatorial auctions with general bidder preferences. Both mechanisms are randomized, and are incentivecompatible in the universal sense. This is in contrast to recent previous work that only addresses the weaker notion o ..."
Abstract

Cited by 79 (15 self)
 Add to MetaCart
We design two computationallyefficient incentivecompatible mechanisms for combinatorial auctions with general bidder preferences. Both mechanisms are randomized, and are incentivecompatible in the universal sense. This is in contrast to recent previous work that only addresses the weaker notion of incentive compatibility in expectation. The first mechanism obtains an O(pm)approximation of the optimal social welfare for arbitrary bidder valuations  this is the best approximation possible in polynomial time. The second one obtains an O(log2 m) approximation for a subclass of bidder valuations that includes all submodular bidders. This improves over the best previously obtained incentivecompatible mechanism for this class which only provides an O(pm)approximation.
Approximate Mechanism Design Without Money
, 2009
"... The literature on algorithmic mechanism design is mostly concerned with gametheoretic versions of optimization problems to which standard economic moneybased mechanisms cannot be applied efficiently. Recent years have seen the design of various truthful approximation mechanisms that rely on enforc ..."
Abstract

Cited by 44 (15 self)
 Add to MetaCart
The literature on algorithmic mechanism design is mostly concerned with gametheoretic versions of optimization problems to which standard economic moneybased mechanisms cannot be applied efficiently. Recent years have seen the design of various truthful approximation mechanisms that rely on enforcing payments. In this paper, we advocate the reconsideration of highly structured optimization problems in the context of mechanism design. We explicitly argue for the first time that, in such domains, approximation can be leveraged to obtain truthfulness without resorting to payments. This stands in contrast to previous work where payments are ubiquitous, and (more often than not) approximation is a necessary evil that is required to circumvent computational complexity. We present a case study in approximate mechanism design without money. In our basic setting agents are located on the real line and the mechanism must select the location of a public facility; the cost of an agent is its distance to the facility. We establish tight upper and lower bounds for the approximation ratio given by strategyproof mechanisms without payments, with respect to both deterministic and randomized mechanisms, under two objective functions: the social cost, and the maximum cost. We then extend our results in two natural directions: a domain where two facilities must be located, and a domain where each agent controls multiple locations.
Truthful mechanism design for multidimensional scheduling via cycle monotonicity
 In Proceedings 8th ACM Conference on Electronic Commerce (EC
, 2007
"... We consider the problem of makespan minimization on m unrelated machines in the context of algorithmic mechanism design, where the machines are the strategic players. This is a multidimensional scheduling domain, and the only known positive results for makespan minimization in such a domain are O(m) ..."
Abstract

Cited by 36 (11 self)
 Add to MetaCart
We consider the problem of makespan minimization on m unrelated machines in the context of algorithmic mechanism design, where the machines are the strategic players. This is a multidimensional scheduling domain, and the only known positive results for makespan minimization in such a domain are O(m)approximation truthful mechanisms [22, 20]. We study a wellmotivated special case of this problem, where the processing time of a job on each machine may either be “low ” or “high”, and the low and high values are public and jobdependent. This preserves the multidimensionality of the domain, and generalizes the restrictedmachines (i.e., {pj, ∞}) setting in scheduling. We give a general technique to convert any capproximation algorithm to a 3capproximation truthfulinexpectation mechanism. This is one of the few known results that shows how to export approximation
Item Pricing for Revenue Maximization
"... We consider the problem of pricing n items to maximize revenue when faced with a series of unknown buyers with complex preferences, and show that a simple pricing scheme achieves surprisingly strong guarantees. We show that in the unlimited supply setting, a random single price achieves expected rev ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
We consider the problem of pricing n items to maximize revenue when faced with a series of unknown buyers with complex preferences, and show that a simple pricing scheme achieves surprisingly strong guarantees. We show that in the unlimited supply setting, a random single price achieves expected revenue within a logarithmic factor of the total social welfare for customers with general valuation functions, which may not even necessarily be monotone. This generalizes work of Guruswami et. al [18], who show a logarithmic factor for only the special cases of singleminded and unitdemand customers. In the limited supply setting, we show that for subadditive valuations, a random single price achieves revenue within a factor of 2 O( √ log n log log n) of the total social welfare, i.e., the optimal revenue the seller could hope to extract even if the seller could price each bundle differently for every buyer. This is the best approximation known for any item pricing scheme for subadditive (or even submodular) valuations, even using multiple prices. We complement this result with a lower bound showing a sequence of subadditive (in fact, XOS) buyers for which any single price has approximation ratio 2 Ω(log1/4 n), thus showing that single price schemes cannot achieve a polylogarithmic ratio. This lower bound demonstrates a clear distinction between revenue maximization and social welfare maximization in this setting, for which [12, 10] show that a fixed price achieves a logarithmic approximation in the case of XOS [12], and more generally subadditive [10], customers.
Setting lower bounds on truthfulness
 In Proceedings of the Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms (SODA
, 2007
"... We present and discuss general techniques for proving inapproximability results for truthful mechanisms. We make use of these techniques to prove lower bounds on the approximability of several nonutilitarian multiparameter problems. In particular, we demonstrate the strength of our techniques by e ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
We present and discuss general techniques for proving inapproximability results for truthful mechanisms. We make use of these techniques to prove lower bounds on the approximability of several nonutilitarian multiparameter problems. In particular, we demonstrate the strength of our techniques by exhibiting a lower bound of 2 − 1 m for the scheduling problem with unrelated machines (formulated as a mechanism design problem in the seminal paper of Nisan and Ronen on Algorithmic Mechanism Design). Our lower bound applies to truthful randomized mechanisms (disregarding any computational assumptions on the running time of these mechanisms). Moreover, it holds even for the weaker notion of truthfulness for randomized mechanisms – i.e., truthfulness in expectation. This lower bound nearly matches the known 7 4 (randomized) truthful upper bound for the case of two machines (a nontruthful FPTAS exists). No lower bound for truthful randomized mechanisms in multiparameter settings was previously known. We show an application of our techniques to the workloadminimization problem in networks. We prove our lower bounds for this problem in the interdomain routing setting presented by Feigenbaum, Papadimitriou, Sami, and Shenker. Finally, we discuss several notions of nonutilitarian “fairness ” (MaxMin fairness, MinMax fairness, and envy minimization). We show how our techniques can be used to prove lower bounds for these notions.
Mechanisms for MultiUnit Auctions
 IN PROCEEDINGS OF THE ACM CONFERENCE ON ELECTRONIC COMMERCE (EC
, 2007
"... We present an incentivecompatible polynomialtime approximation scheme for multiunit auctions with general kminded player valuations. The mechanism fully optimizes over an appropriately chosen subrange of possible allocations and then uses VCG payments over this subrange. We show that obtaining ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
We present an incentivecompatible polynomialtime approximation scheme for multiunit auctions with general kminded player valuations. The mechanism fully optimizes over an appropriately chosen subrange of possible allocations and then uses VCG payments over this subrange. We show that obtaining a fully polynomialtime incentivecompatible approximation scheme, at least using VCG payments, is NPhard. For the case of valuations given by black boxes, we give a polynomialtime incentivecompatible 2approximation mechanism and show that no better is possible, at least using VCG payments.
Limitations of VCGbased mechanisms
 In Proceedings of the 39th annual ACM symposium on Theory of computing
, 2007
"... We consider computationallyefficient incentivecompatible mechanisms that use the VCG payment scheme, and study how well they can approximate the social welfare in auction settings. We present a novel technique for setting lower bounds on the approximation ratio of this type of mechanisms. Specific ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
We consider computationallyefficient incentivecompatible mechanisms that use the VCG payment scheme, and study how well they can approximate the social welfare in auction settings. We present a novel technique for setting lower bounds on the approximation ratio of this type of mechanisms. Specifically, for combinatorial auctions among submodular (and thus also subadditive) bidders we prove an Ω(m 1 6) lower bound, which is close to the known upper bound of O(m 1 2), and qualitatively higher than the constant factor approximation possible from a purely computational point of view.
Buying Cheap is Expensive: Hardness of NonParametric MultiProduct Pricing
 ELECTRONIC COLLOQUIUM ON COMPUTATIONAL COMPLEXITY, REPORT NO. 68
, 2006
"... We investigate nonparametric unitdemand pricing problems, in which the goal is to find revenue maximizing prices for products P based on a set of consumer profiles C obtained, e.g., from an eCommerce website. A consumer profile consists of a number of nonzero budgets and a ranking of all the pro ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
We investigate nonparametric unitdemand pricing problems, in which the goal is to find revenue maximizing prices for products P based on a set of consumer profiles C obtained, e.g., from an eCommerce website. A consumer profile consists of a number of nonzero budgets and a ranking of all the products the consumer is interested in. Once prices are fixed, each consumer chooses to buy one of the products she can afford based on some predefined selection rule. We distinguish between the minbuying, maxbuying, and rankbuying models. For the minbuying and general rankbuying models the best known approximation ratio is O(log C) and, previously, the problem was only known to be APXhard. We obtain the first (near) tight lower bound showing that the problem is not approximable within O(log ε C) for some ε> 0, unless NP ⊆ DTIME(n loglog n). Going to slightly stronger (still reasonable) complexity theoretic assumptions we prove inapproximability within O(ℓ ε) (ℓ being an upper bound on the number of nonzero budgets per consumer) and O(P  ε) and provide matching upper bounds. Surprisingly, these hardness results hold even if a price ladder constraint, i.e., a predefined total order on the prices of all products, is given. This changes if we require that in the rankbuying model consumers’ budgets are consistent with their
Singlevalue combinatorial auctions and algorithmic implementation in undominated strategies
 In ACM Symposium on Discrete Algorithms
, 2011
"... In this paper we are interested in general techniques for designing mechanisms that approximate the social welfare in the presence of selfish rational behavior. We demonstrate our results in the setting of Combinatorial Auctions (CA). Our first result is a general deterministic technique to decouple ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
In this paper we are interested in general techniques for designing mechanisms that approximate the social welfare in the presence of selfish rational behavior. We demonstrate our results in the setting of Combinatorial Auctions (CA). Our first result is a general deterministic technique to decouple the algorithmic allocation problem from the strategic aspects, by a procedure that converts any algorithm to a dominantstrategy ascending mechanism. This technique works for any single value domain, in which each agent has the same value for each desired outcome, and this value is the only private information. In particular, for “singlevalue CAs”, where each player desires any one of several different bundles but has the same value for each of them, our technique converts any approximation algorithm to a dominant strategy mechanism that almost preserves the original approximation ratio. Our second result provides the first computationally efficient deterministic mechanism for the case of singlevalue multiminded bidders (with private value and private desired bundles). The mechanism achieves an approximation to the social welfare which is close to the best possible in polynomial time (unless P=NP). This mechanism is an algorithmic implementation in undominated strategies, a notion that we define and justify, and is of independent interest. 1
Price of Anarchy for Greedy Auctions
"... We study mechanisms for utilitarian combinatorial allocation problems, where agents are not assumed to be singleminded. This class of problems includes combinatorial auctions, multiunit auctions, unsplittable flow problems, and others. We focus on the problem of designing mechanisms that approximat ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
We study mechanisms for utilitarian combinatorial allocation problems, where agents are not assumed to be singleminded. This class of problems includes combinatorial auctions, multiunit auctions, unsplittable flow problems, and others. We focus on the problem of designing mechanisms that approximately optimize social welfare at every BayesNash equilibrium (BNE), which is the standard notion of equilibrium in settings of incomplete information. For a broad class of greedy approximation algorithms, we give a general blackbox reduction to deterministic mechanisms with almost no loss to the approximation ratio at any BNE. We also consider the special case of Nash equilibria in fullinformation games, where we obtain tightened results. This solution concept is closely related to the wellstudied price of anarchy. Furthermore, for a rich subclass of allocation problems, pure Nash equilibria are guaranteed to exist for our mechanisms. For many problems, the approximation factors we obtain at equilibrium improve upon the best known results for deterministic truthful mechanisms. In particular, we exhibit a simple deterministic mechanism for general combinatorial auctions that obtains an O ( √ m) approximation at every BNE. 1