Results 1  10
of
67
Stability of Multiscale Transformations
 J. Fourier Anal. Appl
, 1996
"... After briefly reviewing the interrelation between Rieszbases, biorthogonality and a certain stability notion for multiscale basis transformations we establish a basic stability criterion for a general Hilbert space setting. An important tool in this context is a strengthened Cauchy inequality. It i ..."
Abstract

Cited by 86 (22 self)
 Add to MetaCart
After briefly reviewing the interrelation between Rieszbases, biorthogonality and a certain stability notion for multiscale basis transformations we establish a basic stability criterion for a general Hilbert space setting. An important tool in this context is a strengthened Cauchy inequality. It is based on direct and inverse estimates for a certain scale of spaces induced by the underlying multiresolution sequence. Furthermore, we highlight some properties of these spaces pertaining to duality, interpolation, and applications to norm equivalences for Sobolev spaces. AMS Subject Classification: 41A17, 41A65, 46A35, 46B70, 46E35 Key Words: Riesz bases, biorthogonality, stability, projectors, interpolation theory, Kmethod, duality, Jackson, Bernstein inequalities 1 Background and Motivation A standard framework for approximately recapturing a function v in some infinite dimensional separable Hilbert space V , say, either from explicitly given data or as a solution of an operator equ...
Biorthogonal SplineWavelets on the Interval  Stability and Moment Conditions
 Appl. Comp. Harm. Anal
, 1997
"... This paper is concerned with the construction of biorthogonal multiresolution analyses on [0; 1] such that the corresponding wavelets realize any desired order of moment conditions throughout the interval. Our starting point is the family of biorthogonal pairs consisting of cardinal Bsplines and co ..."
Abstract

Cited by 84 (46 self)
 Add to MetaCart
This paper is concerned with the construction of biorthogonal multiresolution analyses on [0; 1] such that the corresponding wavelets realize any desired order of moment conditions throughout the interval. Our starting point is the family of biorthogonal pairs consisting of cardinal Bsplines and compactly supported dual generators on IR developed by Cohen, Daubechies and Feauveau. In contrast to previous investigations we preserve the full degree of polynomial reproduction also for the dual multiresolution and prove in general that the corresponding modifications of dual generators near the end points of the interval still permit the biorthogonalization of the resulting bases. The subsequent construction of compactly supported biorthogonal wavelets is based on the concept of stable completions. As a first step we derive an initial decomposition of the spline spaces where the complement spaces between two successive levels are spanned by compactly supported splines which form uniformly...
Hierarchical Bases and the Finite Element Method
, 1997
"... CONTENTS 1 Introduction 1 2 Preliminaries 3 3 Fundamental TwoLevel Estimates 7 4 A Posteriori Error Estimates 16 5 TwoLevel Iterative Methods 23 6 Multilevel Cauchy Inequalities 30 7 Multilevel Iterative Methods 34 References 41 1. Introduction In this work we present a brief introduction to hie ..."
Abstract

Cited by 62 (3 self)
 Add to MetaCart
CONTENTS 1 Introduction 1 2 Preliminaries 3 3 Fundamental TwoLevel Estimates 7 4 A Posteriori Error Estimates 16 5 TwoLevel Iterative Methods 23 6 Multilevel Cauchy Inequalities 30 7 Multilevel Iterative Methods 34 References 41 1. Introduction In this work we present a brief introduction to hierarchical bases, and the important part they play in contemporary finite element calculations. In particular, we examine their role in a posteriori error estimation, and in the Department of Mathematics, University of California at San Diego, La Jolla, CA 92093. The work of this author was supported by the Office of Naval Research under contract N0001489J1440. 2 Randolph E. Bank formulation of iterative methods for solving the large sparse sets of linear equations arising from the finite element discretization. Our goal is that the development should be largely selfcontained, but at the same time accessible and interest
Tetrahedral Grid Refinement
, 1995
"... Zusammenfassung Tetrahedral Grid Refinement. We present a refinement algorithm for unstructured tetrahedral grids, which generates possibly highly nonuniform but nevertheless consistent (closed) and stable triangulations. Therefore we first define some local regular and irregular refinement rules t ..."
Abstract

Cited by 51 (1 self)
 Add to MetaCart
Zusammenfassung Tetrahedral Grid Refinement. We present a refinement algorithm for unstructured tetrahedral grids, which generates possibly highly nonuniform but nevertheless consistent (closed) and stable triangulations. Therefore we first define some local regular and irregular refinement rules that are applied to single elements. The global refinement algorithm then describes how these local rules can be combined and rearranged in order to ensure consistency as well as stability. It is given in a rather general form and includes also grid coarsening. 1991 Mathematics Subject Classifications: 65N50, 65N55 Key words: Tetrahedral grid refinement, stable refinements, consistent triangulations, green closure, grid coarsening. Verfeinerung von TetraederGittern. Es wird ein Verfeinerungsalgorithmus fur unstrukturierte TetraederGitter vorgestellt, der moglicherweise stark nichtuniforme aber dennoch konsistente (d.h. geschlossene) und stabile Triangulierungen liefert. Dazu definieren w...
A nonoverlapping domain decomposition method for Maxwell’s equations in three dimensions
 SIAM J. Numer. Anal
"... Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with muc ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with much simpler coarse solvers. Though the condition number of the preconditioned system may not have a good bound, we are able to show that the convergence rate of the PCG method with such substructuring preconditioner is nearly optimal, and also robust with respect to the (possibly large) jumps of the coefficient in the elliptic equation. 1.
Some Nonoverlapping Domain Decomposition Methods
, 1998
"... . The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the Neumann ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
. The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the NeumannNeumanntype methods. The basic framework used for analysis is the parallel subspace correction method or additive Schwarz method, and other technical tools include localglobal and globallocal techniques. The analyses for both two and threedimensional cases are carried out simultaneously. Some internal relationships between various algorithms are observed and several new variants of the algorithms are also derived. Key words. nonoverlapping domain decomposition, Schur complement, localglobal and globallocal techniques, jumps in coe#cients, substructuring, NeumannNeumann, balancing methods AMS subject classifications. 65N30, 65N55, 65F10 PII. S0036144596306800 1. Introduction. T...
Monotone Multigrid Methods for Elliptic Variational Inequalities I
 I. Numer. Math
, 1993
"... . We derive fast solvers for discrete elliptic variational inequalities of the first kind (obstacle problems) as resulting from the approximation of related continuous problems by piecewise linear finite elements. Using basic ideas of successive subspace correction, we modify wellknown relaxation ..."
Abstract

Cited by 32 (9 self)
 Add to MetaCart
. We derive fast solvers for discrete elliptic variational inequalities of the first kind (obstacle problems) as resulting from the approximation of related continuous problems by piecewise linear finite elements. Using basic ideas of successive subspace correction, we modify wellknown relaxation methods by extending the set of search directions. Extended underrelaxations are called monotone multigrid methods, if they are quasioptimal in a certain sense. By construction, all monotone multigrid methods are globally convergent. We take a closer look at two natural variants, the standard monotone multigrid method and a truncated version. For the considered model problems, the asymptotic convergence rates resulting from the standard approach suffer from insufficient coarsegrid transport, while the truncated monotone multigrid method provides the same efficiency as in the unconstrained case. Key words: obstacle problems, adaptive finite element methods, multigrid methods AMS (MOS) subje...
Multilevel Methods for Elliptic Problems on Domains not Resolved by the Coarse Grid
 in Seventh International Symposium on Domain Decomposition Methods for Partial Differential Equations
, 1994
"... . Elliptic boundary value problems are frequently posed on complicated domains, which cannot be covered by a simple coarse initial grid as is needed for multigridlike iterative methods. In the present article, this problem is resolved for selfadjoint second order problems and Dirichlet boundary co ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
. Elliptic boundary value problems are frequently posed on complicated domains, which cannot be covered by a simple coarse initial grid as is needed for multigridlike iterative methods. In the present article, this problem is resolved for selfadjoint second order problems and Dirichlet boundary conditions. The idea is to construct appropriate subspace decompositions of the corresponding finite element spaces by way of an embedding of the domain under consideration into a simpler domain like a square or a cube. Then the general theory of subspace correction methods can be applied. 1. Introduction By definition, a multilevel method for finite element equations is based on a sequence of refined triangulations. One starts with a coarse initial mesh crudely reflecting the properties of the boundary value problem under consideration. For the usual mathematical test problems like the Laplace equation on the unit square or on an Lshaped domain, this initial triangulation consists of only ...
Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell's Equations
, 1997
"... . The focus of this paper is on the efficient solution of boundary value problems involving the doublecurl operator. Those arise in the computation of electromagnetic fields in various settings, for instance when solving the electric or magnetic wave equation with implicit timestepping, when tackl ..."
Abstract

Cited by 21 (10 self)
 Add to MetaCart
. The focus of this paper is on the efficient solution of boundary value problems involving the doublecurl operator. Those arise in the computation of electromagnetic fields in various settings, for instance when solving the electric or magnetic wave equation with implicit timestepping, when tackling timeharmonic problems or in the context of eddycurrent computations. Their discretization is based on on N'ed'elec's H(curl;\Omega\Gamma7131/59948 edge elements on unstructured grids. In order to capture local effects and to guarantee a prescribed accuracy of the approximate solution adaptive refinement of the grid controlled by a posteriori error estimators is employed. The hierarchy of meshes created through adaptive refinement forms the foundation for the fast iterative solution of the resulting linear systems by a multigrid method. The guiding principle underlying the design of both the error estimators and the multigrid method is the separate treatment of the kernel of the cu...
Adaptive Wavelet Schemes for Elliptic Problems  Implementation and Numerical Experiments
 SIAM J. Scient. Comput
, 1999
"... Recently an adaptive wavelet scheme could be proved to be asymptotically optimal for a wide class of elliptic operator equations in the sense that the error achieved by an adaptive approximate solution stays proportional to the smallest possible error that can be realized by any linear combination o ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
Recently an adaptive wavelet scheme could be proved to be asymptotically optimal for a wide class of elliptic operator equations in the sense that the error achieved by an adaptive approximate solution stays proportional to the smallest possible error that can be realized by any linear combination of the corresponding number of wavelets. On one hand, the results are purely asymptotic. On the other hand, the analysis suggests new algorithmic ingredients for which no prototypes seem to exist yet. It is therefore the objective of this paper to develop suitable data structures for the new algorithmic components and to obtain a quantitative validation of the theoretical results. We briey review rst the main theoretical facts, give a detailed description of the algorithm, highlight the essential data structures and illustrate the results by one and two dimensional numerical examples.