Results 1  10
of
12
Types in logic and mathematics before 1940
 Bulletin of Symbolic Logic
, 2002
"... Abstract. In this article, we study the prehistory of type theory up to 1910 and its development between Russell and Whitehead’s Principia Mathematica ([71], 1910–1912) and Church’s simply typed λcalculus of 1940. We first argue that the concept of types has always been present in mathematics, thou ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
Abstract. In this article, we study the prehistory of type theory up to 1910 and its development between Russell and Whitehead’s Principia Mathematica ([71], 1910–1912) and Church’s simply typed λcalculus of 1940. We first argue that the concept of types has always been present in mathematics, though nobody was incorporating them explicitly as such, before the end of the 19th century. Then we proceed by describing how the logical paradoxes entered the formal systems of Frege, Cantor and Peano concentrating on Frege’s Grundgesetze der Arithmetik for which Russell applied his famous paradox 1 and this led him to introduce the first theory of types, the Ramified Type Theory (rtt). We present rtt formally using the modern notation for type theory and we discuss how Ramsey, Hilbert and Ackermann removed the orders from rtt leading to the simple theory of types stt. We present stt and Church’s own simply typed λcalculus (λ→C 2) and we finish by comparing rtt, stt and λ→C. §1. Introduction. Nowadays, type theory has many applications and is used in many different disciplines. Even within logic and mathematics, there are many different type systems. They serve several purposes, and are formulated in various ways. But, before 1903 when Russell first introduced
Reviewing the classical and the de Bruijn notation for λcalculus and pure type systems
 Logic and Computation
, 2001
"... This article is a brief review of the type free λcalculus and its basic rewriting notions, and of the pure type system framework which generalises many type systems. Both the type free λcalculus and the pure type systems are presented using variable names and de Bruijn indices. Using the presentat ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
This article is a brief review of the type free λcalculus and its basic rewriting notions, and of the pure type system framework which generalises many type systems. Both the type free λcalculus and the pure type systems are presented using variable names and de Bruijn indices. Using the presentation of the λcalculus with de Bruijn indices, we illustrate how a calculus of explicit substitutions can be obtained. In addition, de Bruijn's notation for the λcalculus is introduced and some of its advantages are outlined.
Motivations for MathLang
, 2005
"... FOMCAF13 What do we want? Open borders for productive collaboration or that we each stick to our borders without including and benefiting from other input? Do we want war+destruction or solid foundations for wisdom and prosperity? • Do we believe in the chosen framework? Should all the world believe ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
FOMCAF13 What do we want? Open borders for productive collaboration or that we each stick to our borders without including and benefiting from other input? Do we want war+destruction or solid foundations for wisdom and prosperity? • Do we believe in the chosen framework? Should all the world believe in the same framework? Does one framework fit all? Can such a framework exist? • Think of Capitalism, Communism, dictatorship, nationalism, etc... Which one worked in history? • But then, if we are committed to pluralism, are we in danger of being wiped out because being inclusive may well lead to contradictions? • Oscar Wilde: I used to think I was indecisive, but now I’m not sure anymore. FOMCAF13 1Things are not as somber: There is no perfect framework, but some can be invaluable • De Bruijn used to proudly announce: I did it my way. • I quote Dirk van Dalen: The Germans have their 3 B’s, but we Dutch too have our 3 B’s: Beth, Brouwer and de Bruijn. FOMCAF13 2There is a fourth B:
Logic and Computerisation in mathematics?
, 2009
"... – If you give me an algorithm to solve Π, I can check whether this algorithm really solves Π. – But, if you ask me to find an algorithm to solve Π, I may go on forever trying but without success. • But, this result was already found by Aristotle: Assume a proposition Φ. – If you give me a proof of Φ ..."
Abstract
 Add to MetaCart
– If you give me an algorithm to solve Π, I can check whether this algorithm really solves Π. – But, if you ask me to find an algorithm to solve Π, I may go on forever trying but without success. • But, this result was already found by Aristotle: Assume a proposition Φ. – If you give me a proof of Φ, I can check whether this proof really proves Φ. – But, if you ask me to find a proof of Φ, I may go on forever trying but without success. • In fact, programs are proofs and much of computer science in the early part of the 20th century was built by mathematicians and logicians. • There were also important inventions in computer science made by physicists (e.g., von Neumann) and others, but we ignore these in this talk. ISR 2009, Brasiliá, Brasil 1An example of a computable function/solvable problem • E.g., 1.5 chicken lay down 1.5 eggs in 1.5 days. • How many eggs does 1 chicken lay in 1 day? • 1.5 chicken lay 1.5 eggs in 1.5 days. • Hence, 1 chicken lay 1 egg in 1.5 days. • Hence, 1 chicken lay 2/3 egg in 1 day. ISR 2009, Brasiliá, Brasil 2Unsolvability of the Barber problem • which man barber in the village shaves all and only those men who do not shave themselves? • If John was the barber then – John shaves Bill ⇐ ⇒ Bill does not shave Bill – John shaves x ⇐ ⇒ x does not shave x – John shaves John ⇐ ⇒ John does not shave John • Contradiction. ISR 2009, Brasiliá, Brasil 3Unsolvability of the Russell set problem
MathLang: A language for Mathematics
, 2004
"... Parts of this talk are based on joint work with Nederpelt [4] and Maarek and Wells [5] ..."
Abstract
 Add to MetaCart
Parts of this talk are based on joint work with Nederpelt [4] and Maarek and Wells [5]
Um Ceclo de Computeraçao
"... Brasiliá 2010Welcome to the fastest developing and most influential subject: Computer Science • Computer Science is by nature highly applied and needs much precision, foundation and theory. • Computer Science is highly interdisciplinary bringing many subjects together in ways that were not possible ..."
Abstract
 Add to MetaCart
Brasiliá 2010Welcome to the fastest developing and most influential subject: Computer Science • Computer Science is by nature highly applied and needs much precision, foundation and theory. • Computer Science is highly interdisciplinary bringing many subjects together in ways that were not possible before. • Many recent scientific results (e.g., in chemistry) would not have been possible without computers. • The Kepler Conjecture: no packing of congruent balls in Euclidean space has density greater than the density of the facecentered cubic packing. • Sam Ferguson and Tom Hales proved the Kepler Conjecture in 1998, but it was not published until 2006. • The Flyspeck project aims to give a formal proof of the Kepler Conjecture.