Results 1  10
of
24
MULTIPROCESSOR SCHEDULING TO ACCOUNT FOR INTERPROCESSOR COMMUNICATION
, 1991
"... Interprocessor communication (PC) overheads have emerged as the major performance limitation in parallel processing systems, due to the transmission delays, synchronization overheads, and conflicts for shared communication resources created by data exchange. Accounting for these overheads is essenti ..."
Abstract

Cited by 67 (11 self)
 Add to MetaCart
Interprocessor communication (PC) overheads have emerged as the major performance limitation in parallel processing systems, due to the transmission delays, synchronization overheads, and conflicts for shared communication resources created by data exchange. Accounting for these overheads is essential for attaining efficient hardware utilization. This thesis introduces two new compiletime heuristics for scheduling precedence graphs onto multiprocessor architectures, which account for interprocessor communication overheads and interconnection constraints in the architecture. These algorithms perform scheduling and routing simultaneously to account for irregular interprocessor interconnections, and schedule all communications as well as all computations to eliminate shared resource contention. The first technique, called dynamiclevel scheduling, modifies the classical HLFET list scheduling strategy to account for IPC and synchronization overheads. By using dynamically changing priorities to match nodes and processors at each step, this technique attains an equitable tradeoff between load balancing and interprocessor communication cost. This method is fast, flexible, widely targetable, and displays promising perforrnance. The second technique, called declustering, establishes a parallelism hierarchy upon the precedence graph using graphanalysis techniques which explicitly address the tradeoff between exploiting parallelism and incurring communication cost. By systematically decomposing this hierarchy, the declustering process exposes parallelism instances in order of importance, assuring efficient use of the available processing resources. In contrast with traditional clustering schemes, this technique can adjust the level of cluster granularity to suit the characteristics of the specified architecture, leading to a more effective solution.
evolution and application of functional programming languages
 ACM Computing surveys
, 1989
"... The foundations of functional programming languages are examined from both historical and technical perspectives. Their evolution is traced through several critical periods: early work on lambda calculus and combinatory calculus, Lisp, Iswim, FP, ML, and modern functional languages such as Miranda ’ ..."
Abstract

Cited by 44 (0 self)
 Add to MetaCart
The foundations of functional programming languages are examined from both historical and technical perspectives. Their evolution is traced through several critical periods: early work on lambda calculus and combinatory calculus, Lisp, Iswim, FP, ML, and modern functional languages such as Miranda ’ and Haskell. The fundamental premises on which the functional programming methodology stands are critically analyzed with respect to philosophical, theoretical, and pragmatic concerns. Particular attention is paid to the main features that characterize modern functional languages: higherorder functions, lazy evaluation, equations and pattern matching, strong static typing and type inference, and data abstraction. In addition, current research areassuch as parallelism, nondeterminism, input/output, and stateoriented computationsare examined with the goal of predicting the future development and application of functional languages.
The Impact of the Lambda Calculus in Logic and Computer Science
 Bulletin of Symbolic Logic
, 1997
"... One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the represent ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand. Acknowledgement. The following persons provided help in various ways. Erik Barendsen, Jon Barwise, Johan van Benthem, Andreas Blass, Olivier Danvy, Wil Dekkers, Marko van Eekelen, Sol Feferman, Andrzej Filinski, Twan Laan, Jan Kuper, Pierre Lescanne, Hans Mooij, Robert Maron, Rinus Plasmeijer, Randy Pollack, Kristoffer Rose, Richard Shore, Rick Statman and Simon Thompson. Partial support came from the European HCM project Typed lambda calculus (CHRXCT920046), the Esprit Working Group Types (21900) and the Dutch NWO project WINST (612316607). 1. Introduction This paper is written to honor Church's gr...
Single Assignment C  Entwurf und Implementierung einer CVariante mit spezieller Unterstützung shapeinvarianter ArrayOperationen
, 1996
"... ..."
PolyGP: a polymorphic genetic programming system in haskell
 Proc. of the 3rd Annual Conf. Genetic Programming
, 1998
"... In general, the machine learning process can be accelerated through the use of additional knowledge about the problem solution. For example, monomorphic typed Genetic Programming (GP) uses type information to reduce the search space and improve performance. Unfortunately, monomorphic typed GP also l ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
In general, the machine learning process can be accelerated through the use of additional knowledge about the problem solution. For example, monomorphic typed Genetic Programming (GP) uses type information to reduce the search space and improve performance. Unfortunately, monomorphic typed GP also loses the generality of untyped GP: the generated programs are only suitable for inputs with the specified type. Polymorphic typed GP improves over monomorphic and untyped GP by allowing the type information to be
Types in logic and mathematics before 1940
 Bulletin of Symbolic Logic
, 2002
"... Abstract. In this article, we study the prehistory of type theory up to 1910 and its development between Russell and Whitehead’s Principia Mathematica ([71], 1910–1912) and Church’s simply typed λcalculus of 1940. We first argue that the concept of types has always been present in mathematics, thou ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
Abstract. In this article, we study the prehistory of type theory up to 1910 and its development between Russell and Whitehead’s Principia Mathematica ([71], 1910–1912) and Church’s simply typed λcalculus of 1940. We first argue that the concept of types has always been present in mathematics, though nobody was incorporating them explicitly as such, before the end of the 19th century. Then we proceed by describing how the logical paradoxes entered the formal systems of Frege, Cantor and Peano concentrating on Frege’s Grundgesetze der Arithmetik for which Russell applied his famous paradox 1 and this led him to introduce the first theory of types, the Ramified Type Theory (rtt). We present rtt formally using the modern notation for type theory and we discuss how Ramsey, Hilbert and Ackermann removed the orders from rtt leading to the simple theory of types stt. We present stt and Church’s own simply typed λcalculus (λ→C 2) and we finish by comparing rtt, stt and λ→C. §1. Introduction. Nowadays, type theory has many applications and is used in many different disciplines. Even within logic and mathematics, there are many different type systems. They serve several purposes, and are formulated in various ways. But, before 1903 when Russell first introduced
Map Calculus in GIS: a proposal and demonstration
"... This paper provides a new representation for fields (continuous surfaces) in Geographical Information Systems (GIS), based on the notion of spatial functions and their combinations. Following Tomlin’s (1990) Map Algebra, the term “Map Calculus” is used for this new representation. In Map Calculus, G ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper provides a new representation for fields (continuous surfaces) in Geographical Information Systems (GIS), based on the notion of spatial functions and their combinations. Following Tomlin’s (1990) Map Algebra, the term “Map Calculus” is used for this new representation. In Map Calculus, GIS layers are stored as functions, and new layers can be created by combinations of other functions. This paper explains the principles of Map Calculus and demonstrates the creation of functionbased layers and their supporting management mechanism. The proposal is based on Church’s (1941) Lambda Calculus and elements of functional computer languages (such as Lisp or Scheme).
Resolving Concurrent Interactions
 3 rd International Workshop on Distributed Interactive Simulation and Real Time Applications
, 1999
"... Serialization, the traditional method of resolving concurrent interactions, is often inappropriate; when interactions are dependent on each other, other policies for resolving them may be more suitable. We use semantic information to help categorize common interactions encountered in the modeling an ..."
Abstract
 Add to MetaCart
Serialization, the traditional method of resolving concurrent interactions, is often inappropriate; when interactions are dependent on each other, other policies for resolving them may be more suitable. We use semantic information to help categorize common interactions encountered in the modeling and simulation domain. This categorization enables us to suggest reasonable policies for resolving the effects of concurrent interactions. 1. Introduction One of the most significant challenges facing the simulation community is MultiRepresentation Modeling (MRM)  the joint execution of multiple models of the same object or process [8]. The crux of the challenge is resolving concurrent interactions on the representations in the different models [17]. Many systems either serialize concurrent interactions or avoid them by restricting the interactions that can cooccur. However, serialization and avoidance are insufficient for resolving the effects of concurrent interactions in the general c...
LambdaCalculus and Functional Programming
"... This paper deals with the problem of a program that is essentially the same over any of several types but which, in the older imperative languages must be rewritten for each separate type. For example, a sort routine may be written with essentially the same code except for the types for integers, bo ..."
Abstract
 Add to MetaCart
This paper deals with the problem of a program that is essentially the same over any of several types but which, in the older imperative languages must be rewritten for each separate type. For example, a sort routine may be written with essentially the same code except for the types for integers, booleans, and strings. It is clearly desirable to have a method of writing a piece of code that can accept the specific type as an argument. Milner developed his ideas in terms of type assignment to lambdaterms. It is based on a result due originally to Curry (Curry 1969) and Hindley (Hindley 1969) known as the principal typescheme theorem, which says that (assuming that the typing assumptions are sufficiently wellbehaved) every term has a principal typescheme, which is a typescheme such that every other typescheme which can be proved for the given term is obtained by a substitution of types for type variables. This use of type schemes allows a kind of generality over all types, which is known as polymorphism.