Results 1  10
of
61
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 482 (11 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a mechanical way to algorithms for SDP with proofs of convergence and polynomial time complexity also carrying over in a similar fashion. Finally we study the significance of these results in a variety of combinatorial optimization problems including the general 01 integer programs, the maximum clique and maximum stable set problems in perfect graphs, the maximum k partite subgraph problem in graphs, and va...
An InteriorPoint Method for Semidefinite Programming
, 2005
"... We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other appli ..."
Abstract

Cited by 207 (17 self)
 Add to MetaCart
We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other applications include maxmin eigenvalue problems and relaxations for the stable set problem.
Solving LargeScale Sparse Semidefinite Programs for Combinatorial Optimization
 SIAM JOURNAL ON OPTIMIZATION
, 1998
"... We present a dualscaling interiorpoint algorithm and show how it exploits the structure and sparsity of some large scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational re ..."
Abstract

Cited by 116 (11 self)
 Add to MetaCart
We present a dualscaling interiorpoint algorithm and show how it exploits the structure and sparsity of some large scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational results of interiorpoint algorithms for approximating the maximum cut semidefinite programs with dimension upto 3000.
On the NesterovTodd direction in semidefinite programming
 SIAM Journal on Optimization
, 1996
"... Nesterov and Todd discuss several pathfollowing and potentialreduction interiorpoint methods for certain convex programming problems. In the special case of semidefinite programming, we discuss how to compute the corresponding directions efficiently, how to view them as Newton directions, and how ..."
Abstract

Cited by 108 (22 self)
 Add to MetaCart
Nesterov and Todd discuss several pathfollowing and potentialreduction interiorpoint methods for certain convex programming problems. In the special case of semidefinite programming, we discuss how to compute the corresponding directions efficiently, how to view them as Newton directions, and how to take Mehrotra predictorcorrector steps in this framework. We also provide some computational results suggesting that our algorithm is more robust than alternative methods.
The Mathematics Of Eigenvalue Optimization
, 2003
"... Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemp ..."
Abstract

Cited by 92 (13 self)
 Add to MetaCart
Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary optimization theory. This essay presents a personal choice of some central mathematical ideas, outlined for the broad optimization community. I discuss the convex analysis of spectral functions and invariant matrix norms, touching briey on semide nite representability, and then outlining two broader algebraic viewpoints based on hyperbolic polynomials and Lie algebra. Analogous nonconvex notions lead into eigenvalue perturbation theory. The last third of the article concerns stability, for polynomials, matrices, and associated dynamical systems, ending with a section on robustness. The powerful and elegant language of nonsmooth analysis appears throughout, as a unifying narrative thread.
A PrimalDual Potential Reduction Method for Problems Involving Matrix Inequalities
 in Protocol Testing and Its Complexity", Information Processing Letters Vol.40
, 1995
"... We describe a potential reduction method for convex optimization problems involving matrix inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and generalizes Gonzaga and Todd's method for linear programming. A worstcase analysis shows that the number of iterations ..."
Abstract

Cited by 87 (21 self)
 Add to MetaCart
We describe a potential reduction method for convex optimization problems involving matrix inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and generalizes Gonzaga and Todd's method for linear programming. A worstcase analysis shows that the number of iterations grows as the square root of the problem size, but in practice it appears to grow more slowly. As in other interiorpoint methods the overall computational effort is therefore dominated by the leastsquares system that must be solved in each iteration. A type of conjugategradient algorithm can be used for this purpose, which results in important savings for two reasons. First, it allows us to take advantage of the special structure the problems often have (e.g., Lyapunov or algebraic Riccati inequalities). Second, we show that the polynomial bound on the number of iterations remains valid even if the conjugategradient algorithm is not run until completion, which in practice can greatly reduce the computational effort per iteration.
Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming
, 1997
"... Given a partial symmetric matrix A with only certain elements specified, the Euclidean distance matrix completion problem (IgDMCP) is to find the unspecified elements of A that make A a Euclidean distance matrix (IgDM). In this paper, we follow the successful approach in [20] and solve the IgDMCP by ..."
Abstract

Cited by 69 (14 self)
 Add to MetaCart
Given a partial symmetric matrix A with only certain elements specified, the Euclidean distance matrix completion problem (IgDMCP) is to find the unspecified elements of A that make A a Euclidean distance matrix (IgDM). In this paper, we follow the successful approach in [20] and solve the IgDMCP by generalizing the completion problem to allow for approximate completions. In particular, we introduce a primaldual interiorpoint algorithm that solves an equivalent (quadratic objective function) semidefinite programming problem (SDP). Numerical results are included which illustrate the efficiency and robustness of our approach. Our randomly generated problems consistently resulted in low dimensional solutions when no completion existed.
Method of centers for minimizing generalized eigenvalues
 Linear Algebra Appl
, 1993
"... We consider the problem of minimizing the largest generalized eigenvalue of a pair of symmetric matrices, each of which depends affinely on the decision variables. Although this problem may appear specialized, it is in fact quite general, and includes for example all linear, quadratic, and linear fr ..."
Abstract

Cited by 65 (14 self)
 Add to MetaCart
We consider the problem of minimizing the largest generalized eigenvalue of a pair of symmetric matrices, each of which depends affinely on the decision variables. Although this problem may appear specialized, it is in fact quite general, and includes for example all linear, quadratic, and linear fractional programs. Many problems arising in control theory can be cast in this form. The problem is nondifferentiable but quasiconvex, so methods such as Kelley's cuttingplane algorithm or the ellipsoid algorithm of Shor, Nemirovksy, and Yudin are guaranteed to minimize it. In this paper we describe relevant background material and a simple interior point method that solves such problems more efficiently. The algorithm is a variation on Huard's method of centers, using a selfconcordant barrier for matrix inequalities developed by Nesterov and Nemirovsky. (Nesterov and Nemirovsky have also extended their potential reduction methods to handle the same problem [NN91b].) Since the problem is quasiconvex but not convex, devising a nonheuristic stopping criterion (i.e., one that guarantees a given accuracy) is more difficult than in the convex case. We describe several nonheuristic stopping criteria that are based on the dual of a related convex problem and a new ellipsoidal approximation that is slightly sharper, in some cases, than a more general result due to Nesterov and Nemirovsky. The algorithm is demonstrated on an example: determining the quadratic Lyapunov function that optimizes a decay rate estimate for a differential inclusion.
Robust meansquared error estimation in the presence of model uncertainties
 IEEE Trans. on Signal Processing
, 2005
"... Abstract—We consider the problem of estimating an unknown parameter vector x in a linear model that may be subject to uncertainties, where the vector x is known to satisfy a weighted norm constraint. We first assume that the model is known exactly and seek the linear estimator that minimizes the wor ..."
Abstract

Cited by 52 (37 self)
 Add to MetaCart
Abstract—We consider the problem of estimating an unknown parameter vector x in a linear model that may be subject to uncertainties, where the vector x is known to satisfy a weighted norm constraint. We first assume that the model is known exactly and seek the linear estimator that minimizes the worstcase meansquared error (MSE) across all possible values of x. We show that for an arbitrary choice of weighting, the optimal minimax MSE estimator can be formulated as a solution to a semidefinite programming problem (SDP), which can be solved very efficiently. We then develop a closed form expression for the minimax MSE estimator for a broad class of weighting matrices and show that it coincides with the shrunken estimator of Mayer and Willke, with a specific choice of shrinkage factor that explicitly takes the prior information into account. Next, we consider the case in which the model matrix is subject to uncertainties and seek the robust linear estimator that minimizes the worstcase MSE across all possible values of x and all possible values of the model matrix. As we show, the robust minimax MSE estimator can also be formulated as a solution to an SDP. Finally, we demonstrate through several examples that the minimax MSE estimator can significantly increase the performance over the conventional leastsquares estimator, and when the model matrix is subject to uncertainties, the robust minimax MSE estimator can lead to a considerable improvement in performance over the minimax MSE estimator. Index Terms—Data uncertainty, linear estimation, mean squared error estimation, minimax estimation, robust estimation. I.