Results 1 
3 of
3
Ten Problems in Experimental Mathematics
, 2006
"... Challenge ” of Nick Trefethen, beautifully described in [12] (see also [13]). Indeed, these ten numeric challenge problems are also listed in [15, pp. 22–26], where they are followed by the ten symbolic/numeric challenge problems that are discussed in this article. Our intent in [15] was to present ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
Challenge ” of Nick Trefethen, beautifully described in [12] (see also [13]). Indeed, these ten numeric challenge problems are also listed in [15, pp. 22–26], where they are followed by the ten symbolic/numeric challenge problems that are discussed in this article. Our intent in [15] was to present ten problems that are characteristic of the sorts of problems
AN EXPERIMENTAL INVESTIGATION OF THE NORMALITY OF IRRATIONAL ALGEBRAIC NUMBERS
"... Abstract. We investigate the distribution of digits of large prefixes of the expansion of irrational algebraic numbers to different bases. We compute 2·3 18 bits of the binary expansions (corresponding to 2.33·10 8 decimals) of the 39 least PisotVijayaraghavan numbers, the 47 least known Salem numb ..."
Abstract
 Add to MetaCart
Abstract. We investigate the distribution of digits of large prefixes of the expansion of irrational algebraic numbers to different bases. We compute 2·3 18 bits of the binary expansions (corresponding to 2.33·10 8 decimals) of the 39 least PisotVijayaraghavan numbers, the 47 least known Salem numbers, the least 20 square roots of positive integers that are not perfect squares, and 15 randomly generated algebraic irrationals. We employ these to compute the generalized serial statistics (roughly, the variant of the χ 2statistic apt for distribution of sequences of characters) of the distributions of digit blocks for each number to bases 2, 3, 5, 7 and 10, as well as the maximum relative frequency deviation from perfect equidistribution. We use the two statistics to perform tests at significance level α =0.05, respectively, maximum deviation threshold α =0.05. Our results suggest that if Borel’s conjecture—that all irrational algebraic numbers are normal—is true, then it may have an empirical base: The distribution of digits in algebraic numbers appears close to equidistribution for large