Results 1  10
of
93
Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
 PROCEEDINGS OF THE TWENTYFIRST ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1989
"... In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntact ..."
Abstract

Cited by 311 (16 self)
 Add to MetaCart
In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntactic form in which the learner chooses to represent its hypotheses. Our methods reduce the problems of cracking a number of wellknown publickey cryptosystems to the learning problems. We prove that a polynomialtime learning algorithm for Boolean formulae, deterministic finite automata or constantdepth threshold circuits would have dramatic consequences for cryptography and number theory: in particular, such an algorithm could be used to break the RSA cryptosystem, factor Blum integers (composite numbers equivalent to 3 modulo 4), and detect quadratic residues. The results hold even if the learning algorithm is only required to obtain a slight advantage in prediction over random guessing. The techniques used demonstrate an interesting duality between learning and cryptography. We also apply our results to obtain strong intractability results for approximating a generalization of graph coloring.
Boundedwidth polynomialsize branching programs recognize exactly those languages
 in NC’, in “Proceedings, 18th ACM STOC
, 1986
"... We show that any language recognized by an NC ’ circuit (fanin 2, depth O(log n)) can be recognized by a width5 polynomialsize branching program. As any boundedwidth polynomialsize branching program can be simulated by an NC ’ circuit, we have that the class of languages recognized by such prog ..."
Abstract

Cited by 209 (13 self)
 Add to MetaCart
We show that any language recognized by an NC ’ circuit (fanin 2, depth O(log n)) can be recognized by a width5 polynomialsize branching program. As any boundedwidth polynomialsize branching program can be simulated by an NC ’ circuit, we have that the class of languages recognized by such programs is exactly nonuniform NC’. Further, following
Numbertheoretic constructions of efficient pseudorandom functions
 In 38th Annual Symposium on Foundations of Computer Science
, 1997
"... ..."
On Uniformity within NC¹
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1990
"... In order to study circuit complexity classes within NC¹ in a uniform setting, we need a uniformity condition which is more restrictive than those in common use. Two such conditions, stricter than NC¹ uniformity [Ru81,Co85], have appeared in recent research: Immerman's families of circuits defined by ..."
Abstract

Cited by 127 (19 self)
 Add to MetaCart
In order to study circuit complexity classes within NC¹ in a uniform setting, we need a uniformity condition which is more restrictive than those in common use. Two such conditions, stricter than NC¹ uniformity [Ru81,Co85], have appeared in recent research: Immerman's families of circuits defined by firstorder formulas [Im87a,Im87b] and a uniformity corresponding to Buss' deterministic logtime reductions [Bu87]. We show that these two notions are equivalent, leading to a natural notion of uniformity for lowlevel circuit complexity classes. We show that recent results on the structure of NC¹ [Ba89] still hold true in this very uniform setting. Finally, we investigate a parallel notion of uniformity, still more restrictive, based on the regular languages. Here we give characterizations of subclasses of the regular languages based on their logical expressibility, extending recent work of Straubing, Th'erien, and Thomas [STT88]. A preliminary version of this work appeared as [BIS88].
On the power of smalldepth threshold circuits
 Proceedings 31st Annual IEEE Symposium on Foundations of Computer Science
, 1990
"... Abstract. Weinvestigate the power of threshold circuits of small depth. In particular, we give functions that require exponential size unweighted threshold circuits of depth 3 when we restrict the bottom fanin. We also prove that there are monotone functions fk that can be computed in depth k and li ..."
Abstract

Cited by 103 (2 self)
 Add to MetaCart
Abstract. Weinvestigate the power of threshold circuits of small depth. In particular, we give functions that require exponential size unweighted threshold circuits of depth 3 when we restrict the bottom fanin. We also prove that there are monotone functions fk that can be computed in depth k and linear size ^ � _circuits but require exponential size to compute by a depth k; 1 monotone weighted threshold circuit. Key words. Circuit complexity, monotone circuits, threshold circuits, lower bounds Subject classi cations. 68Q15, 68Q99 1.
Models of Computation  Exploring the Power of Computing
"... Theoretical computer science treats any computational subject for which a good model can be created. Research on formal models of computation was initiated in the 1930s and 1940s by Turing, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language translators, and oper ..."
Abstract

Cited by 57 (7 self)
 Add to MetaCart
Theoretical computer science treats any computational subject for which a good model can be created. Research on formal models of computation was initiated in the 1930s and 1940s by Turing, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language translators, and operating systems were under development and therefore became both the subject and basis for a great deal of theoretical work. The power of computers of this period was limited by slow processors and small amounts of memory, and thus theories (models, algorithms, and analysis) were developed to explore the efficient use of computers as well as the inherent complexity of problems. The former subject is known today as algorithms and data structures, the latter computational complexity. The focus of theoretical computer scientists in the 1960s on languages is reflected in the first textbook on the subject, Formal Languages and Their Relation to Automata by John Hopcroft and Jeffrey Ullman. This influential book led to the creation of many languagecentered theoretical computer science courses; many introductory theory courses today continue to reflect the content of this book and the interests of theoreticians of the 1960s and early 1970s. Although
Fast parallel circuits for the quantum Fourier transform
 PROCEEDINGS 41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS’00)
, 2000
"... We give new bounds on the circuit complexity of the quantum Fourier transform (QFT). We give an upper bound of O(log n + log log(1/ε)) on the circuit depth for computing an approximation of the QFT with respect to the modulus 2 n with error bounded by ε. Thus, even for exponentially small error, our ..."
Abstract

Cited by 55 (3 self)
 Add to MetaCart
We give new bounds on the circuit complexity of the quantum Fourier transform (QFT). We give an upper bound of O(log n + log log(1/ε)) on the circuit depth for computing an approximation of the QFT with respect to the modulus 2 n with error bounded by ε. Thus, even for exponentially small error, our circuits have depth O(log n). The best previous depth bound was O(n), even for approximations with constant error. Moreover, our circuits have size O(n log(n/ε)). We also give an upper bound of O(n(log n) 2 log log n) on the circuit size of the exact QFT modulo 2 n, for which the best previous bound was O(n 2). As an application of the above depth bound, we show that Shor’s factoring algorithm may be based on quantum circuits with depth only O(log n) and polynomialsize, in combination with classical polynomialtime pre and postprocessing. In the language of computational complexity, this implies that factoring is in the complexity class ZPP BQNC, where BQNC is the class of problems computable with boundederror probability by quantum circuits with polylogarithmic depth and polynomial size. Finally, we prove an Ω(log n) lower bound on the depth complexity of approximations of the
Simulating Boolean Circuits on a DNA Computer
, 1997
"... We demonstrate that DNA computers can simulate Boolean circuits with a small overhead. Boolean circuits embody the notion of massively parallel signal processing and are jrequen,tly encountered in many parallel algorithms. Many important problems such as sorting, integer arithmetic, and matrix mult ..."
Abstract

Cited by 55 (9 self)
 Add to MetaCart
We demonstrate that DNA computers can simulate Boolean circuits with a small overhead. Boolean circuits embody the notion of massively parallel signal processing and are jrequen,tly encountered in many parallel algorithms. Many important problems such as sorting, integer arithmetic, and matrix multiplication are known to be computable by small size Boolean circuits much faster than by ordinary sequential digital computers. This paper shows that DNA chemistry allows one to simulate large semiunbounded janin Boolean circuits with a logarithmic slowdown in computation time. Also, for the class NC¹, the slowdown can be reduced to a constant. In this algorathm we have encoded the inputs, the Boolean AND gates, and the OR gates to DNA oligonucleotide sequences. We operate on the gates and the inputs by standard molecular techniques of sequencespecific annealing, ligation, separation by size, amplification, sequencespecific cleavage, and detection by size. Additional steps of amplification are not necessary for NC¹ circuits. Preliminary biochemical experiments on a small test circuit have produced encouraging results. Further confirmatory experiments are in progress.
ON THRESHOLD CIRCUITS AND POLYNOMIAL COMPUTATION
"... A Threshold Circuit consists of an acyclic digraph of unbounded fanin, where each node computes a threshold function or its negation. This paper investigates the computational power of Threshold Circuits. A surprising relationship is uncovered between Threshold Circuits and another class of unbound ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
A Threshold Circuit consists of an acyclic digraph of unbounded fanin, where each node computes a threshold function or its negation. This paper investigates the computational power of Threshold Circuits. A surprising relationship is uncovered between Threshold Circuits and another class of unbounded fanin circuits which are denoted Finite Field ZP (n) Circuits, where each node computes either multiple sums or products of integers modulo a prime P (n). In particular, it is proved that all functions computed by Threshold Circuits of size S(n) n and depth D(n) can also be computed by ZP (n) Circuits of size O(S(n) log S(n)+nP (n) log P (n)) and depth O(D(n)). Furthermore, it is shown that all functions computed by ZP (n) Circuits of size S(n) and depth D(n) can be computed by Threshold Circuits of size O ( 1 2 (S(n) log P (n)) 1+) and depth O ( 1 5 D(n)). These are the main results of this paper. There are many useful and quite surprising consequences of this result. For example, integer reciprocal can be computed in size n O(1) and depth O(1). More generally, any analytic function with a convergent rational polynomial power series (such as sine, cosine, exponentiation, square root, and logarithm) can be computed within accuracy 2,nc, for any constant c, by Threshold Circuits of
On Interpolation and Automatization for Frege Systems
, 2000
"... The interpolation method has been one of the main tools for proving lower bounds for propositional proof systems. Loosely speaking, if one can prove that a particular proof system has the feasible interpolation property, then a generic reduction can (usually) be applied to prove lower bounds for the ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
The interpolation method has been one of the main tools for proving lower bounds for propositional proof systems. Loosely speaking, if one can prove that a particular proof system has the feasible interpolation property, then a generic reduction can (usually) be applied to prove lower bounds for the proof system, sometimes assuming a (usually modest) complexitytheoretic assumption. In this paper, we show that this method cannot be used to obtain lower bounds for Frege systems, or even for TC 0 Frege systems. More specifically, we show that unless factoring (of Blum integers) is feasible, neither Frege nor TC 0 Frege has the feasible interpolation property. In order to carry out our argument, we show how to carry out proofs of many elementary axioms/theorems of arithmetic in polynomial size TC 0 Frege. As a corollary, we obtain that TC 0 Frege as well as any proof system that polynomially simulates it, is not automatizable (under the assumption that factoring of Blum integ...