Results 1  10
of
216
Polynomial time approximation schemes for Euclidean TSP and other geometric problems
 In Proceedings of the 37th IEEE Symposium on Foundations of Computer Science (FOCS’96
, 1996
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c � 1 and given any n nodes in � 2, a randomized version of the scheme finds a (1 � 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes a ..."
Abstract

Cited by 320 (3 self)
 Add to MetaCart
Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c � 1 and given any n nodes in � 2, a randomized version of the scheme finds a (1 � 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes are in � d, the running time increases to O(n(log n) (O(�dc))d�1). For every fixed c, d the running time is n � poly(log n), that is nearly linear in n. The algorithm can be derandomized, but this increases the running time by a factor O(n d). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best approximation algorithms for all these problems achieved a constantfactor approximation. We also give efficient approximation schemes for Euclidean MinCost Matching, a problem that can be solved exactly in polynomial time. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as �p for p � 1 or other Minkowski norms). They also have simple parallel (i.e., NC) implementations.
Complexity and Approximation
, 1999
"... Abstract. In this survey the following model is considered. We assume that an instance I of a computationally hard optimization problem has been solved and that we know the optimum solution of such instance. Then a new instance I ′ is proposed, obtained by means of a slight perturbation of instance ..."
Abstract

Cited by 176 (1 self)
 Add to MetaCart
Abstract. In this survey the following model is considered. We assume that an instance I of a computationally hard optimization problem has been solved and that we know the optimum solution of such instance. Then a new instance I ′ is proposed, obtained by means of a slight perturbation of instance I. How can we exploit the knowledge we have on the solution of instance I to compute a (approximate) solution of instance I ′ in an efficient way? This computation model is called reoptimization and is of practical interest in various circumstances. In this article we first discuss what kind of performance we can expect for specific classes of problems and then we present some classical optimization problems (i.e. Max Knapsack, Min Steiner Tree, Scheduling) in which this approach has been fruitfully applied. Subsequently, we address vehicle routing problems and we show how the reoptimization approach can be used to obtain good approximate solution in an efficient way for some of these problems. 1
Voronoi Diagrams
 Handbook of Computational Geometry
"... Voronoi diagrams can also be thought of as lower envelopes, in the sense mentioned at the beginning of this subsection. Namely, for each point x not situated on a bisecting curve, the relation p x q defines a total ordering on S. If we construct a set of surfaces H p , p S,in3space such t ..."
Abstract

Cited by 143 (19 self)
 Add to MetaCart
Voronoi diagrams can also be thought of as lower envelopes, in the sense mentioned at the beginning of this subsection. Namely, for each point x not situated on a bisecting curve, the relation p x q defines a total ordering on S. If we construct a set of surfaces H p , p S,in3space such that H p is below H q i# p x q holds, then the projection of their lower envelope equals the abstract Voronoi diagram.
Spanning Trees and Spanners
, 1996
"... We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. ..."
Abstract

Cited by 143 (2 self)
 Add to MetaCart
We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. For instance, one may wish to connect components of a VLSI circuit by networks of wires, in a way that uses little surface area on the chip, draws little power, and propagates signals quickly. Similar problems come up in other applications such as telecommunications, road network design, and medical imaging [1]. One network design problem, the Traveling Salesman problem, is sufficiently important to have whole books devoted to it [79]. Problems involving some form of geometric minimum or maximum spanning tree also arise in the solution of other geometric problems such as clustering [12], mesh generation [56], and robot motion planning [93]. One can vary the network design problem in many w...
Iterated local search
 Handbook of Metaheuristics, volume 57 of International Series in Operations Research and Management Science
, 2002
"... Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions th ..."
Abstract

Cited by 121 (15 self)
 Add to MetaCart
Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for a given optimization engine. The success of Iterated Local Search lies in the biased sampling of this set of local optima. How effective this approach turns out to be depends mainly on the choice of the local search, the perturbations, and the acceptance criterion. So far, in spite of its conceptual simplicity, it has lead to a number of stateoftheart results without the use of too much problemspecific knowledge. But with further work so that the different modules are well adapted to the problem at hand, Iterated Local Search can often become a competitive or even state of the art algorithm. The purpose of this review is both to give a detailed description of this metaheuristic and to show where it stands in terms of performance. O.M. acknowledges support from the Institut Universitaire de France. This work was partially supported by the “Metaheuristics Network”, a Research Training Network funded by the Improving Human Potential programme of the CEC, grant HPRNCT199900106. The information provided is the sole responsibility of the authors and does not reflect the Community’s opinion. The Community is not responsible for any use that might be made of data appearing in this publication. 1 1
Code Growth in Genetic Programming
, 1998
"... Genetic programming is a technique for the automatic generation of computer programs loosely based on the theory of evolution. It has produced successful solutions to a wide variety of problems and can be effective even in noisy and changing environments. However, genetic programming produces soluti ..."
Abstract

Cited by 99 (9 self)
 Add to MetaCart
Genetic programming is a technique for the automatic generation of computer programs loosely based on the theory of evolution. It has produced successful solutions to a wide variety of problems and can be effective even in noisy and changing environments. However, genetic programming produces solutions with large amounts of unnecessary code. The amount of unnecessary code increases over time and is not proportional to increases in the quality of the solutions produced. Thus, this additional code seriously hinders the genetic programming processes by requiring extra resources without producing equivalent returns. This dissertation examines the causes of this "code growth." We use three test problems from very different fields of interest to confirm the generality of the results. We tested the destructive hypothesis, that code growth is a protective response to the destructiveness of crossover, as a potential cause of code growth. It is a definite cause, but is not sufficient to explai...
Nearly Linear Time Approximation Schemes for Euclidean TSP and other Geometric Problems
, 1997
"... We present a randomized polynomial time approximation scheme for Euclidean TSP in ! 2 that is substantially more efficient than our earlier scheme in [2] (and the scheme of Mitchell [21]). For any fixed c ? 1 and any set of n nodes in the plane, the new scheme finds a (1+ 1 c )approximation to ..."
Abstract

Cited by 91 (4 self)
 Add to MetaCart
We present a randomized polynomial time approximation scheme for Euclidean TSP in ! 2 that is substantially more efficient than our earlier scheme in [2] (and the scheme of Mitchell [21]). For any fixed c ? 1 and any set of n nodes in the plane, the new scheme finds a (1+ 1 c )approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. (Our earlier scheme ran in n O(c) time.) For points in ! d the algorithm runs in O(n(log n) (O( p dc)) d\Gamma1 ) time. This time is polynomial (actually nearly linear) for every fixed c; d. Designing such a polynomialtime algorithm was an open problem (our earlier algorithm in [2] ran in superpolynomial time for d 3). The algorithm generalizes to the same set of Euclidean problems handled by the previous algorithm, including Steiner Tree, kTSP, kMST, etc, although for kTSP and kMST the running time gets multiplied by k. We also use our ideas to design nearlylinear time approximation schemes for Euclidean vers...
Faster scaling algorithms for general graphmatching problems
 JOURNAL OF THE ACM
, 1991
"... An algorithm for minimumcost matching on a general graph with integral edge costs is presented. The algorithm runs in time close to the fastest known bound for maximumcardinality matching. Specifically, let n, m, and N denote the number of vertices, number of edges, and largest magnitude of a cost ..."
Abstract

Cited by 84 (2 self)
 Add to MetaCart
An algorithm for minimumcost matching on a general graph with integral edge costs is presented. The algorithm runs in time close to the fastest known bound for maximumcardinality matching. Specifically, let n, m, and N denote the number of vertices, number of edges, and largest magnitude of a cost, respectively. The best known time bound for maximumcardinal ity matching M 0 ( Am). The new algorithm for minimumcost matching has time bound 0 ( in a ( m, n)Iog n m log ( nN)). A slight modification of the new algorithm finds a maximumcardinality matching in 0 ( fire) time. Other applications of the new algorlthm are given, mchrding an efficient implementation of Christofides ’ traveling salesman approximation algorithm and efficient solutions to update problems that require the linear programming duals for matching.