Results 1  10
of
399
Implementing approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations: A manual for the inlaprogram
, 2008
"... Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothingspline models, statespace models, semiparametric regression, spatial and spatiotemp ..."
Abstract

Cited by 294 (20 self)
 Add to MetaCart
(Show Context)
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothingspline models, statespace models, semiparametric regression, spatial and spatiotemporal models, logGaussian Coxprocesses, geostatistical and geoadditive models. In this paper we consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models, where the latent field is Gaussian, controlled by a few hyperparameters and with nonGaussian response variables. The posterior marginals are not available in closed form due to the nonGaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, both in terms of convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 277 (13 self)
 Add to MetaCart
(Show Context)
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feedforward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
Spatial Econometrics
 PALGRAVE HANDBOOK OF ECONOMETRICS: VOLUME 1, ECONOMETRIC THEORY
, 2001
"... Spatial econometric methods deal with the incorporation of spatial interaction and spatial structure into regression analysis. The field has seen a recent and rapid growth spurred both by theoretical concerns as well as by the need to be able to apply econometric models to emerging large geocoded da ..."
Abstract

Cited by 183 (7 self)
 Add to MetaCart
Spatial econometric methods deal with the incorporation of spatial interaction and spatial structure into regression analysis. The field has seen a recent and rapid growth spurred both by theoretical concerns as well as by the need to be able to apply econometric models to emerging large geocoded data bases. The review presented in this chapter outlines the basic terminology and discusses in some detail the specification of spatial effects, estimation of spatial regression models, and specification tests for spatial effects.
How Many Iterations in the Gibbs Sampler?
 In Bayesian Statistics 4
, 1992
"... When the Gibbs sampler is used to estimate posterior distributions (Gelfand and Smith, 1990), the question of how many iterations are required is central to its implementation. When interest focuses on quantiles of functionals of the posterior distribution, we describe an easilyimplemented metho ..."
Abstract

Cited by 155 (6 self)
 Add to MetaCart
When the Gibbs sampler is used to estimate posterior distributions (Gelfand and Smith, 1990), the question of how many iterations are required is central to its implementation. When interest focuses on quantiles of functionals of the posterior distribution, we describe an easilyimplemented method for determining the total number of iterations required, and also the number of initial iterations that should be discarded to allow for "burnin". The method uses only the Gibbs iterates themselves, and does not, for example, require external specification of characteristics of the posterior density. Here the method is described for the situation where one long run is generated, but it can also be easily applied if there are several runs from different starting points. It also applies more generally to Markov chain Monte Carlo schemes other than the Gibbs sampler. It can also be used when several quantiles are to be estimated, when the quantities of interest are probabilities rath...
On Conditional and Intrinsic Autoregressions
, 1995
"... This paper discusses standard and intrinsic autoregressions and describes how the problems that arise can be alleviated using Dempster's (1972) algorithm or an appropriate modification. The approach partly represents a synthesis of standard geostatistical and Gaussian Markov random field formul ..."
Abstract

Cited by 130 (7 self)
 Add to MetaCart
This paper discusses standard and intrinsic autoregressions and describes how the problems that arise can be alleviated using Dempster's (1972) algorithm or an appropriate modification. The approach partly represents a synthesis of standard geostatistical and Gaussian Markov random field formulations. Some nonspatial applications are also mentioned. Some key words: Agricultural experiments; Bayesian image analysis; Conditional autoregressions; Dempster's algorithm; Geographical epidemiology; Geostatistics; Intrinsic autoregressions; Multiway tables; Prior distributions; Spatial statistics; Surface reconstruction; Texture analysis. 1 Introduction
Bayesian PSplines
 Journal of Computational and Graphical Statistics
, 2004
"... Psplines are an attractive approach for modelling nonlinear smooth effects of covariates within the generalized additive and varying coefficient models framework. In this paper we propose a Bayesian version for Psplines and generalize the approach for one dimensional curves to two dimensional surf ..."
Abstract

Cited by 122 (26 self)
 Add to MetaCart
Psplines are an attractive approach for modelling nonlinear smooth effects of covariates within the generalized additive and varying coefficient models framework. In this paper we propose a Bayesian version for Psplines and generalize the approach for one dimensional curves to two dimensional surface fitting for modelling interactions between metrical covariates. A Bayesian approach to Psplines has the advantage of allowing for simultaneous estimation of smooth functions and smoothing parameters. Moreover, it can easily be extended to more complex formulations, for example to mixed models with random effects for serially or spatially correlated response. Additionally, the assumption of constant smoothing parameters can be replaced by allowing the smoothing parameters to be locally adaptive. This is particularly useful in situations with changing curvature of the underlying smooth function or where the function is highly oscillating. Inference is fully Bayesian and uses recent MCMC techniques for drawing random samples from the posterior. In a couple of simulation studies the performance of Bayesian Psplines is studied and compared to other approaches in the literature. We illustrate the approach by a complex application on rents for flats in Munich.
An Explicit Link between Gaussian Fields and . . .
 PREPRINTS IN MATHEMATICAL SCIENCES
, 2010
"... Continuously indexed Gaussian fields (GFs) is the most important ingredient in spatial statistical modelling and geostatistics. The specification through the covariance function gives an intuitive interpretation of its properties. On the computational side, GFs are hampered with the bign problem, ..."
Abstract

Cited by 115 (18 self)
 Add to MetaCart
Continuously indexed Gaussian fields (GFs) is the most important ingredient in spatial statistical modelling and geostatistics. The specification through the covariance function gives an intuitive interpretation of its properties. On the computational side, GFs are hampered with the bign problem, since the cost of factorising dense matrices is cubic in the dimension. Although the computational power today is alltimehigh, this fact seems still to be a computational bottleneck in applications. Along with GFs, there is the class of Gaussian Markov random fields (GMRFs) which are discretely indexed. The Markov property makes the involved precision matrix sparse which enables the use of numerical algorithms for sparse matrices, that for fields in R 2 only use the squareroot of the time required by general algorithms. The specification of a GMRF is through its full conditional distributions but its marginal properties are not transparent in such a parametrisation. In this paper, we show that using an approximate stochastic weak solution to (linear) stochastic partial differential equations (SPDEs), we can, for some GFs in the Matérn class, provide an explicit link, for any triangulation of R d, between GFs and GMRFs. The consequence is that we can take the best from the two worlds and do the modelling using GFs but do the computations using GMRFs. Perhaps more importantly,
Bayesian inference for generalized additive mixed models based on markov random field priors
 C
, 2001
"... Summary. Most regression problems in practice require ¯exible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in lo ..."
Abstract

Cited by 111 (26 self)
 Add to MetaCart
Summary. Most regression problems in practice require ¯exible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a uni®ed approach for Bayesian inference via Markov chain Monte Carlo simulation in generalized additive and semiparametric mixed models. Different types of covariates, such as the usual covariates with ®xed effects, metrical covariates with nonlinear effects, unstructured random effects, trend and seasonal components in longitudinal data and spatial covariates, are all treated within the same general framework by assigning appropriate Markov random ®eld priors with different forms and degrees of smoothness. We applied the approach in several casestudies and consulting cases, showing that the methods are also computationally feasible in problems with many covariates and large data sets. In this paper, we choose two typical applications.
Fast Sampling Of Gaussian Markov Random Fields With Applications
 Journal of the Royal Statistical Society, Series B
, 2000
"... This report has URL http://www.math.ntnu.no/preprint/statistics/2000/S12000.ps ..."
Abstract

Cited by 110 (6 self)
 Add to MetaCart
This report has URL http://www.math.ntnu.no/preprint/statistics/2000/S12000.ps
Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
 Ecography
, 2007
"... ..."