Results 1  10
of
410
Smooth minimization of nonsmooth functions
 Math. Programming
, 2005
"... In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit maxstructure. Our approach can be considered as an alternative to blackbox minimization. F ..."
Abstract

Cited by 252 (0 self)
 Add to MetaCart
In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit maxstructure. Our approach can be considered as an alternative to blackbox minimization. From the viewpoint of efficiency estimates, we manage to improve the traditional bounds on the number of iterations of the gradient schemes from O unchanged. 1 ɛ 2 to O
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 215 (15 self)
 Add to MetaCart
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is sufficiently large. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this preexisting concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
Numerical solution of saddle point problems
 ACTA NUMERICA
, 2005
"... Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has b ..."
Abstract

Cited by 179 (29 self)
 Add to MetaCart
Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for solving this type of systems. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.
On the DouglasRachford splitting method and the proximal point algorithm for maximal monotone operators
, 1992
"... ..."
Robust Principal Component Analysis?
, 2009
"... This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse co ..."
Abstract

Cited by 138 (6 self)
 Add to MetaCart
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the ℓ1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
Sequential Quadratic Programming
, 1995
"... this paper we examine the underlying ideas of the SQP method and the theory that establishes it as a framework from which effective algorithms can ..."
Abstract

Cited by 113 (2 self)
 Add to MetaCart
this paper we examine the underlying ideas of the SQP method and the theory that establishes it as a framework from which effective algorithms can
Minimizing the Average Cost of Paging Under Delay Constraints
 Wireless Networks
, 1995
"... Efficient paging procedures help minimize the amount of bandwidth expended in locating a mobile unit. Given a probability distribution on user location, it is shown that the optimal paging strategy which minimizes the expected number of locations polled E[L] is to query each location sequentially in ..."
Abstract

Cited by 104 (12 self)
 Add to MetaCart
Efficient paging procedures help minimize the amount of bandwidth expended in locating a mobile unit. Given a probability distribution on user location, it is shown that the optimal paging strategy which minimizes the expected number of locations polled E[L] is to query each location sequentially in order of decreasing probability. However, since sequential search over many locations may impose unacceptable polling delay, D, optimal paging subject to delay constraints is considered. It is shown that substantial reductions in E[L] can be had even after moderate constraints are imposed on acceptable D (i.e., D 3). Since all methods of mobility management eventually reduce to considering a timevarying probability distribution on user location, this work should be applicable to a wide range of problems in the area. most notably those with additive cost structures. 1 Introduction Paging and registration are necessary features of wireless communication networks because user locations va...
LAGRANGE MULTIPLIERS AND OPTIMALITY
, 1993
"... Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of constrained minimization in order to write firstorder optimality conditions formally as a system of equations. Modern applications, with their emphasis on numerical methods and more complicated side conditions ..."
Abstract

Cited by 87 (7 self)
 Add to MetaCart
Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of constrained minimization in order to write firstorder optimality conditions formally as a system of equations. Modern applications, with their emphasis on numerical methods and more complicated side conditions than equations, have demanded deeper understanding of the concept and how it fits into a larger theoretical picture. A major line of research has been the nonsmooth geometry of onesided tangent and normal vectors to the set of points satisfying the given constraints. Another has been the gametheoretic role of multiplier vectors as solutions to a dual problem. Interpretations as generalized derivatives of the optimal value with respect to problem parameters have also been explored. Lagrange multipliers are now being seen as arising from a general rule for the subdifferentiation of a nonsmooth objective function which allows blackandwhite constraints to be replaced by penalty expressions. This paper traces such themes in the current theory of Lagrange multipliers, providing along the way a freestanding exposition of basic nonsmooth analysis as motivated by and applied to this subject.
A Semismooth Equation Approach To The Solution Of Nonlinear Complementarity Problems
, 1995
"... In this paper we present a new algorithm for the solution of nonlinear complementarity problems. The algorithm is based on a semismooth equation reformulation of the complementarity problem. We exploit the recent extension of Newton's method to semismooth systems of equations and the fact that the n ..."
Abstract

Cited by 79 (9 self)
 Add to MetaCart
In this paper we present a new algorithm for the solution of nonlinear complementarity problems. The algorithm is based on a semismooth equation reformulation of the complementarity problem. We exploit the recent extension of Newton's method to semismooth systems of equations and the fact that the natural merit function associated to the equation reformulation is continuously differentiable to develop an algorithm whose global and quadratic convergence properties can be established under very mild assumptions. Other interesting features of the new algorithm are an extreme simplicity along with a low computational burden per iteration. We include numerical tests which show the viability of the approach.
Support vector machines for speech recognition
 Proceedings of the International Conference on Spoken Language Processing
, 1998
"... Statistical techniques based on hidden Markov Models (HMMs) with Gaussian emission densities have dominated signal processing and pattern recognition literature for the past 20 years. However, HMMs trained using maximum likelihood techniques suffer from an inability to learn discriminative informati ..."
Abstract

Cited by 75 (2 self)
 Add to MetaCart
Statistical techniques based on hidden Markov Models (HMMs) with Gaussian emission densities have dominated signal processing and pattern recognition literature for the past 20 years. However, HMMs trained using maximum likelihood techniques suffer from an inability to learn discriminative information and are prone to overfitting and overparameterization. Recent work in machine learning has focused on models, such as the support vector machine (SVM), that automatically control generalization and parameterization as part of the overall optimization process. In this paper, we show that SVMs provide a significant improvement in performance on a static pattern classification task based on the Deterding vowel data. We also describe an application of SVMs to large vocabulary speech recognition, and demonstrate an improvement in error rate on a continuous alphadigit task (OGI Aphadigits) and a large vocabulary conversational speech task (Switchboard). Issues related to the development and optimization of an SVM/HMM hybrid system are discussed.