Results 1  10
of
132
Less is more: Active learning with support vector machines
, 2000
"... We describe a simple active learning heuristic which greatly enhances the generalization behavior of support vector machines (SVMs) on several practical document classification tasks. We observe a number of benefits, the most surprising of which is that a SVM trained on a wellchosen subset of the av ..."
Abstract

Cited by 257 (1 self)
 Add to MetaCart
(Show Context)
We describe a simple active learning heuristic which greatly enhances the generalization behavior of support vector machines (SVMs) on several practical document classification tasks. We observe a number of benefits, the most surprising of which is that a SVM trained on a wellchosen subset of the available corpus frequently performs better than one trained on all available data. The heuristic for choosing this subset is simple to compute, and makes no use of information about the test set. Given that the training time of SVMs depends heavily on the training set size, our heuristic not only offers better performance with fewer data, it frequently does so in less time than the naive approach of training on all available data. 1.
Computing Variance for Interval Data is NPHard
, 2002
"... When we have only interval ranges [x i ; x i ] of sample values x 1 ; : : : ; xn , what is the interval [V ; V ] of possible values for the variance V of these values? We prove that the problem of computing the upper bound V is NPhard. We provide a feasible (quadratic time) algorithm for computi ..."
Abstract

Cited by 65 (48 self)
 Add to MetaCart
When we have only interval ranges [x i ; x i ] of sample values x 1 ; : : : ; xn , what is the interval [V ; V ] of possible values for the variance V of these values? We prove that the problem of computing the upper bound V is NPhard. We provide a feasible (quadratic time) algorithm for computing the lower bound V on the variance of interval data. We also provide a feasible algorithm that computes V under reasonable easily verifiable conditions.
SEARCH, polynomial complexity, and the fast messy genetic algorithm
, 1995
"... Blackbox optimizationoptimization in presence of limited knowledge about the objective functionhas recently enjoyed a large increase in interest because of the demand from the practitioners. This has triggered a race for new high performance algorithms for solving large, difficult problems. Si ..."
Abstract

Cited by 52 (10 self)
 Add to MetaCart
Blackbox optimizationoptimization in presence of limited knowledge about the objective functionhas recently enjoyed a large increase in interest because of the demand from the practitioners. This has triggered a race for new high performance algorithms for solving large, difficult problems. Simulated annealing, genetic algorithms, tabu search are some examples. Unfortunately, each of these algorithms is creating a separate field in itself and their use in practice is often guided by personal discretion rather than scientific reasons. The primary reason behind this confusing situation is the lack of any comprehensive understanding about blackbox search. This dissertation takes a step toward clearing some of the confusion. The main objectives of this dissertation are: 1. present SEARCH (Search Envisioned As Relation & Class Hierarchizing)an alternate perspective of blackbox optimization and its quantitative analysis that lays the foundation essential for transcending the limits of random enumerative search; 2. design and testing of the fast messy genetic algorithm. SEARCH is a general framework for understanding blackbox optimization in terms of relations,
Quadratic Optimization
, 1995
"... . Quadratic optimization comprises one of the most important areas of nonlinear programming. Numerous problems in real world applications, including problems in planning and scheduling, economies of scale, and engineering design, and control are naturally expressed as quadratic problems. Moreover, t ..."
Abstract

Cited by 52 (3 self)
 Add to MetaCart
. Quadratic optimization comprises one of the most important areas of nonlinear programming. Numerous problems in real world applications, including problems in planning and scheduling, economies of scale, and engineering design, and control are naturally expressed as quadratic problems. Moreover, the quadratic problem is known to be NPhard, which makes this one of the most interesting and challenging class of optimization problems. In this chapter, we review various properties of the quadratic problem, and discuss different techniques for solving various classes of quadratic problems. Some of the more successful algorithms for solving the special cases of bound constrained and large scale quadratic problems are considered. Examples of various applications of quadratic programming are presented. A summary of the available computational results for the algorithms to solve the various classes of problems is presented. Key words: Quadratic optimization, bilinear programming, concave pro...
Security in multiagent systems by policy randomization
"... Security in multiagent systems is commonly defined as the ability of the system to deal with intentional threats from other agents. This paper focuses on domains where such intentional threats are caused by unseen adversaries whose actions or payoffs are unknown. In such domains, action randomizatio ..."
Abstract

Cited by 48 (28 self)
 Add to MetaCart
(Show Context)
Security in multiagent systems is commonly defined as the ability of the system to deal with intentional threats from other agents. This paper focuses on domains where such intentional threats are caused by unseen adversaries whose actions or payoffs are unknown. In such domains, action randomization can effectively deteriorate an adversary’s capability to predict and exploit an agent/agent team’s actions. Unfortunately, little attention has been paid to intentional randomization of agents ’ policies in singleagent or decentralized (PO)MDPs without significantly sacrificing rewards or breaking down coordination. This paper provides two key contributions to remedy this situation. First, it provides three novel algorithms, one based on a nonlinear program and two based on linear programs (LP), to randomize singleagent policies, while attaining a certain level of expected reward. Second, it provides Rolling Down Randomization (RDR), a new algorithm that efficiently generates randomized policies for decentralized POMDPs via the singleagent LP method.
Rigorous Convex Underestimators for General TwiceDifferentiable Problems
 Journal of Global Optimization
, 1996
"... . In order to generate valid convex lower bounding problems for nonconvex twicedifferentiable optimization problems, a method that is based on second order information of general twicedifferentiable functions is presented. Using interval Hessian matrices, valid lower bounds on the eigenvalues ..."
Abstract

Cited by 43 (15 self)
 Add to MetaCart
(Show Context)
. In order to generate valid convex lower bounding problems for nonconvex twicedifferentiable optimization problems, a method that is based on second order information of general twicedifferentiable functions is presented. Using interval Hessian matrices, valid lower bounds on the eigenvalues of such functions are obtained and used in constructing convex underestimators. By solving several nonlinear example problems, it is shown that the lower bounds are sufficiently tight to ensure satisfactory convergence of the ffBB, a branch and bound algorithm which relies on this underestimation procedure [3]. Key words: convex underestimators; twicedifferentiable; interval anlysis; eigenvalues 1. Introduction The mathematical description of many physical phenomena, such as phase equilibrium, or of chemical processes generally requires the introduction of nonconvex functions. As the number of local solutions to a nonconvex optimization problem cannot be predicted a priori, the identifi...
Error Estimations For Indirect Measurements: Randomized Vs. Deterministic Algorithms For "BlackBox" Programs
 Handbook on Randomized Computing, Kluwer, 2001
, 2000
"... In many reallife situations, it is very difficult or even impossible to directly measure the quantity y in which we are interested: e.g., we cannot directly measure a distance to a distant galaxy or the amount of oil in a given well. Since we cannot measure such quantities directly, we can measure ..."
Abstract

Cited by 31 (14 self)
 Add to MetaCart
(Show Context)
In many reallife situations, it is very difficult or even impossible to directly measure the quantity y in which we are interested: e.g., we cannot directly measure a distance to a distant galaxy or the amount of oil in a given well. Since we cannot measure such quantities directly, we can measure them indirectly: by first measuring some relating quantities x1 ; : : : ; xn , and then by using the known relation between x i and y to reconstruct the value of the desired quantity y. In practice, it is often very important to estimate the error of the resulting indirect measurement. In this paper, we describe and compare different deterministic and randomized algorithms for solving this problem in the situation when a program for transforming the estimates e x1 ; : : : ; e xn for x i into an estimate for y is only available as a black box (with no source code at hand). We consider this problem in two settings: statistical, when measurements errors \Deltax i = e x i \Gamma x i are inde...