Results 1  10
of
99
Sequential Quadratic Programming
, 1995
"... this paper we examine the underlying ideas of the SQP method and the theory that establishes it as a framework from which effective algorithms can ..."
Abstract

Cited by 166 (4 self)
 Add to MetaCart
this paper we examine the underlying ideas of the SQP method and the theory that establishes it as a framework from which effective algorithms can
NEWTON'S METHOD WITH A MODEL TRUST REGION MODIFICATION
, 1982
"... A modified Newton method for unconstrained minimization is presented and analyzed. The modification is based upon the model trust region approach. This report contains a thorough analysis of the locally constrained quadratic minimizations that arise as subproblems in the modified Newton iteration. ..."
Abstract

Cited by 129 (5 self)
 Add to MetaCart
A modified Newton method for unconstrained minimization is presented and analyzed. The modification is based upon the model trust region approach. This report contains a thorough analysis of the locally constrained quadratic minimizations that arise as subproblems in the modified Newton iteration. Several promising alternatives are presented for solving these subproblems in ways that overcome certain theoretical difficulties exposed by this analysis. Very strong convergence results are presented concerning the minimization algorithm. In particular, the explicit use of second order information is justified by demonstrating that the iterates converge to a point which satisfies the second order necessary conditions for minimization. With the exception of very pathological cases this occurs whenever the algorithm is applied to problems with continuous second partial derivatives.
A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables
, 1992
"... . We propose a new algorithm, a reflective Newton method, for the minimization of a quadratic function of many variables subject to upper and lower bounds on some of the variables. The method applies to a general (indefinite) quadratic function, for which a local minimizer subject to bounds is requi ..."
Abstract

Cited by 97 (3 self)
 Add to MetaCart
. We propose a new algorithm, a reflective Newton method, for the minimization of a quadratic function of many variables subject to upper and lower bounds on some of the variables. The method applies to a general (indefinite) quadratic function, for which a local minimizer subject to bounds is required, and is particularily suitable for the largescale problem. Our new method exhibits strong convergence properties, global and quadratic convergence, and appears to have significant practical potential. Strictly feasible points are generated. Experimental results on moderately large and sparse problems support the claim of practicality for largescale problems. 1 Research partially supported by the Applied Mathematical Sciences Research Program (KC04 02) of the Office of Energy Research of the U.S. Department of Energy under grant DEFG0286ER25013. A000, and by the Computational Mathematics Program of the National Science Foundation under grant DMS8706133, and by the Cornell Theory Cen...
On Augmented Lagrangian methods with general lowerlevel constraints
, 2005
"... Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. In ..."
Abstract

Cited by 84 (7 self)
 Add to MetaCart
(Show Context)
Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. Inexact resolution of the lowerlevel constrained subproblems is considered. Global convergence is proved using the Constant Positive Linear Dependence constraint qualification. Conditions for boundedness of the penalty parameters are discussed. The reliability of the approach is tested by means of an exhaustive comparison against Lancelot. All the problems of the Cute collection are used in this comparison. Moreover, the resolution of location problems in which many constraints of the lowerlevel set are nonlinear is addressed, employing the Spectral Projected Gradient method for solving the subproblems. Problems of this type with more than 3 × 10 6 variables and 14 × 10 6 constraints are solved in this way, using moderate computer time.
A semidefinite framework for trust region subproblems with applications to large scale minimization
, 2002
"... ..."
(Show Context)
Indefinite Trust Region Subproblems And Nonsymmetric Eigenvalue Perturbations
, 1995
"... This paper extends the theory of trust region subproblems in two ways: (i) it allows indefinite inner products in the quadratic constraint and (ii) it uses a two sided (upper and lower bound) quadratic constraint. Characterizations of optimality are presented, which have no gap between necessity and ..."
Abstract

Cited by 73 (18 self)
 Add to MetaCart
This paper extends the theory of trust region subproblems in two ways: (i) it allows indefinite inner products in the quadratic constraint and (ii) it uses a two sided (upper and lower bound) quadratic constraint. Characterizations of optimality are presented, which have no gap between necessity and sufficiency. Conditions for the existence of solutions are given in terms of the definiteness of a matrix pencil. A simple dual program is intro...
A New Trust Region Algorithm For Equality Constrained Optimization
, 1995
"... . We present a new trust region algorithm for solving nonlinear equality constrained optimization problems. At each iterate a change of variables is performed to improve the ability of the algorithm to follow the constraint level sets. The algorithm employs L 2 penalty functions for obtaining global ..."
Abstract

Cited by 72 (7 self)
 Add to MetaCart
. We present a new trust region algorithm for solving nonlinear equality constrained optimization problems. At each iterate a change of variables is performed to improve the ability of the algorithm to follow the constraint level sets. The algorithm employs L 2 penalty functions for obtaining global convergence. Under certain assumptions we prove that this algorithm globally converges to a point satisfying the second order necessary optimality conditions; the local convergence rate is quadratic. Results of preliminary numerical experiments are presented. 1. Introduction. We consider the equality constrained optimization problem minimize f(x) subject to c(x) = 0 (1:1) where x 2 ! n and f : ! n ! !, and c : ! n ! ! m are smooth nonlinear functions. Problem (1.1) is often solved by successive quadratic programming (SQP) methods. At a current point x k 2 ! n , SQP methods determine a search direction d k by solving a quadratic programming problem minimize rf(x k ) T d + 1 2 ...
Global Convergence of a Class of Trust Region Algorithms for Optimization Using Inexact Projections on Convex Constraints
, 1995
"... A class of trust region based algorithms is presented for the solution of nonlinear optimization problems with a convex feasible set. At variance with previously published analysis of this type, the theory presented allows for the use of general norms. Furthermore, the proposed algorithms do not r ..."
Abstract

Cited by 72 (6 self)
 Add to MetaCart
A class of trust region based algorithms is presented for the solution of nonlinear optimization problems with a convex feasible set. At variance with previously published analysis of this type, the theory presented allows for the use of general norms. Furthermore, the proposed algorithms do not require the explicit computation of the projected gradient, and can therefore be adapted to cases where the projection onto the feasible domain may be expensive to calculate. Strong global convergence results are derived for the class. It is also shown that the set of linear and nonlinear constraints that are binding at the solution are identified by the algorithms of the class in a finite number of iterations.
TrustRegion InteriorPoint Algorithms For Minimization Problems With Simple Bounds
 SIAM J. CONTROL AND OPTIMIZATION
, 1995
"... Two trustregion interiorpoint algorithms for the solution of minimization problems with simple bounds are analyzed and tested. The algorithms scale the local model in a way similar to Coleman and Li [1]. The first algorithm is more usual in that the trust region and the local quadratic model are c ..."
Abstract

Cited by 55 (17 self)
 Add to MetaCart
Two trustregion interiorpoint algorithms for the solution of minimization problems with simple bounds are analyzed and tested. The algorithms scale the local model in a way similar to Coleman and Li [1]. The first algorithm is more usual in that the trust region and the local quadratic model are consistently scaled. The second algorithm proposed here uses an unscaled trust region. A global convergence result for these algorithms is given and dogleg and conjugategradient algorithms to compute trial steps are introduced. Some numerical examples that show the advantages of the second algorithm are presented.