Results 1 
6 of
6
The HOL Light manual (1.1)
, 2000
"... ion is in a precise sense a converse operation to application. Given 49 50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT a variable x and a term t, which may or may not contain x, one can construct the socalled lambdaabstraction x: t, which means `the function of x that yields t'. (In HOL's ASCII concr ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
ion is in a precise sense a converse operation to application. Given 49 50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT a variable x and a term t, which may or may not contain x, one can construct the socalled lambdaabstraction x: t, which means `the function of x that yields t'. (In HOL's ASCII concrete syntax the backslash is used, e.g. \x. t.) For example, x: x + 1 is the function that adds one to its argument. Abstractions are not often seen in informal mathematics, but they have at least two merits. First, they allow one to write anonymous functionvalued expressions without naming them (occasionally one sees x 7! t[x] used for this purpose), and since our logic is avowedly higher order, it's desirable to place functions on an equal footing with rstorder objects in this way. Secondly, they make variable dependencies and binding explicit; by contrast in informal mathematics one often writes f(x) in situations where one really means x: f(x). We should give some idea of how ordina...
Strategic Computation and Deduction
, 2009
"... I'd like to conclude by emphasizing what a wonderful eld this is to work in. Logical reasoning plays such a fundamental role in the spectrum of intellectual activities that advances in automating logic will inevitably have a profound impact in many intellectual disciplines. Of course, these things t ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
I'd like to conclude by emphasizing what a wonderful eld this is to work in. Logical reasoning plays such a fundamental role in the spectrum of intellectual activities that advances in automating logic will inevitably have a profound impact in many intellectual disciplines. Of course, these things take time. We tend to be impatient, but we need some historical perspective. The study of logic has a very long history, going back at least as far as Aristotle. During some of this time not very much progress was made. It's gratifying to realize how much has been accomplished in the less than fty years since serious e orts to mechanize logic began.
Uniqueness of Normal Proofs in Implicational Intuitionistic Logic
 Journal of Logic, Language and Information
, 1999
"... . A minimal theorem in a logic L is an Ltheorem which is not a nontrivial substitution instance of another Ltheorem. Komori (1987) raised the question whether every minimal implicational theorem in intuitionistic logic has a unique normal proof in the natural deduction system NJ. The answer has be ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
. A minimal theorem in a logic L is an Ltheorem which is not a nontrivial substitution instance of another Ltheorem. Komori (1987) raised the question whether every minimal implicational theorem in intuitionistic logic has a unique normal proof in the natural deduction system NJ. The answer has been known to be partially positive and generally negative. It is shown here that a minimal implicational theorem A in intuitionistic logic has a unique finormal proof in NJ whenever A is provable without nonprime contraction. The nonprime contraction rule in NJ is the implication introduction rule whose cancelled assumption differs from a propositional variable and appears more than once in the proof. Our result improves the known partial positive solutions to Komori's problem. Also, we present another simple example of a minimal implicational theorem in intuitionistic logic which does not have a unique fijnormal proof in NJ. Key words: natural deduction, uniqueness of normal proofs, coh...
The HOL Light manual (1.0)
, 1998
"... ion is in a precise sense a converse operation to application. Given 49 50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT a variable x and a term t, which may or may not contain x, one can construct the socalled lambdaabstraction x: t, which means `the function of x that yields t'. (In HOL's ASCII concr ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
ion is in a precise sense a converse operation to application. Given 49 50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT a variable x and a term t, which may or may not contain x, one can construct the socalled lambdaabstraction x: t, which means `the function of x that yields t'. (In HOL's ASCII concrete syntax the backslash is used, e.g. "x. t.) For example, x: x + 1 is the function that adds one to its argument. Abstractions are not often seen in informal mathematics, but they have at least two merits. First, they allow one to write anonymous functionvalued expressions without naming them (occasionally one sees x 7! t[x] used for this purpose), and since our logic is avowedly higher order, it's desirable to place functions on an equal footing with firstorder objects in this way. Secondly, they make variable dependencies and binding explicit; by contrast in informal mathematics one often writes f(x) in situations where one really means x: f(x). We should give some idea of how ordinary...
Superdeduction at Work
"... Abstract Superdeduction is a systematic way to extend a deduction system like the sequent calculus by new deduction rules computed from the user theory. We show how this could be done in a systematic, correct and complete way. We prove in detail the strong normalization of a proof term language that ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract Superdeduction is a systematic way to extend a deduction system like the sequent calculus by new deduction rules computed from the user theory. We show how this could be done in a systematic, correct and complete way. We prove in detail the strong normalization of a proof term language that models appropriately superdeduction. We finaly examplify on several examples, including equality and noetherian induction, the usefulness of this approach which is implemented in the lemuridæ system, written in TOM. 1
GentzenPrawitz Natural Deduction as a Teaching Tool
, 907
"... Abstract. We report a fouryears experiment in teaching reasoning to undergraduate students, ranging from weak to gifted, using GentzenPrawitz’s style natural deduction. We argue that this pedagogical approach is a good alternative to the use of Boolean algebra for teaching reasoning, especially fo ..."
Abstract
 Add to MetaCart
Abstract. We report a fouryears experiment in teaching reasoning to undergraduate students, ranging from weak to gifted, using GentzenPrawitz’s style natural deduction. We argue that this pedagogical approach is a good alternative to the use of Boolean algebra for teaching reasoning, especially for computer scientists and formal methods practioners. 1