Results 1 
2 of
2
A Limiting First Order Realizability Interpretation
"... Constructive Mathematics might be regarded as a fragment of classical mathematics in which any proof of an existence theorem is equipped with a computable function giving the solution of the theorem. Limit Computable Mathematics (LCM) considered in this note is a fragment of classical mathematics ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Constructive Mathematics might be regarded as a fragment of classical mathematics in which any proof of an existence theorem is equipped with a computable function giving the solution of the theorem. Limit Computable Mathematics (LCM) considered in this note is a fragment of classical mathematics in which any proof of an existence theorem is equipped with a function computing the solution of the theorem in the limit.
Towards Limit Computable Mathematics
"... The notion of LimitComputable Mathematics (LCM) will be introduced. LCM is a fragment of classical mathematics in which the law of excluded middle is restricted to 1 0 2 formulas. We can give an accountable computational interpretation to the proofs of LCM. The computational content of LCMp ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
The notion of LimitComputable Mathematics (LCM) will be introduced. LCM is a fragment of classical mathematics in which the law of excluded middle is restricted to 1 0 2 formulas. We can give an accountable computational interpretation to the proofs of LCM. The computational content of LCMproofs is given by Gold's limiting recursive functions, which is the fundamental notion of learning theory. LCM is expected to be a right means for "Proof Animation," which was introduced by the first author [10]. LCM is related not only to learning theory and recursion theory, but also to many areas in mathematics and computer science such as computational algebra, computability theories in analysis, reverse mathematics, and many others.