Results 1 
3 of
3
Highprecision floatingpoint arithmetic in scientific computation
 Computing in Science and Engineering, May–June
, 2005
"... At the present time, IEEE 64bit floatingpoint arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required: some of these applications require roughly twice ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
At the present time, IEEE 64bit floatingpoint arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required: some of these applications require roughly twice this level; others require four times; while still others require hundreds or more digits to obtain numerically meaningful results. Such calculations have been facilitated by new highprecision software packages that include highlevel language translation modules to minimize the conversion effort. These activities have yielded a number of interesting new scientific results in fields as diverse as quantum theory, climate modeling and experimental mathematics, a few of which are described in this article. Such developments suggest that in the future, the numeric precision used for a scientific computation may be as important to the program design as are the algorithms and data structures.
Ten Problems in Experimental Mathematics
, 2006
"... Challenge ” of Nick Trefethen, beautifully described in [12] (see also [13]). Indeed, these ten numeric challenge problems are also listed in [15, pp. 22–26], where they are followed by the ten symbolic/numeric challenge problems that are discussed in this article. Our intent in [15] was to present ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
Challenge ” of Nick Trefethen, beautifully described in [12] (see also [13]). Indeed, these ten numeric challenge problems are also listed in [15, pp. 22–26], where they are followed by the ten symbolic/numeric challenge problems that are discussed in this article. Our intent in [15] was to present ten problems that are characteristic of the sorts of problems