Results 1  10
of
120
Extending and Implementing the Stable Model Semantics
, 2002
"... A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities ..."
Abstract

Cited by 396 (8 self)
 Add to MetaCart
(Show Context)
A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities. A declarative semantics is developed which extends the stable model semantics of normal programs. The computational complexity of the language is shown to be similar to that of normal programs under the stable model semantics. A simple embedding of general weight constraint rules to a small subclass of the language called basic constraint rules is devised. An implementation of the language, the smodels system, is developed based on this embedding. It uses a two level architecture consisting of a frontend and a kernel language implementation. The frontend allows restricted use of variables and functions and compiles general weight constraint rules to basic constraint rules. A major part of the work is the development of an ecient search procedure for computing stable models for this kernel language. The procedure is compared with and empirically tested against satis ability checkers and an implementation of the stable model semantics. It offers a competitive implementation of the stable model semantics for normal programs and attractive performance for problems where the new types of rules provide a compact representation.
Logic Programs with Stable Model Semantics as a Constraint Programming Paradigm
"... ..."
(Show Context)
Answer Set Programming and Plan Generation
 ARTIFICIAL INTELLIGENCE
, 2002
"... The idea of answer set programming is to represent a given computational problem by a logic program whose answer sets correspond to solutions, and then use an answer set solver, such as smodels or dlv, to find an answer set for this program. Applications of this method to planning are related to the ..."
Abstract

Cited by 176 (6 self)
 Add to MetaCart
(Show Context)
The idea of answer set programming is to represent a given computational problem by a logic program whose answer sets correspond to solutions, and then use an answer set solver, such as smodels or dlv, to find an answer set for this program. Applications of this method to planning are related to the line of research on the frame problem that started with the invention of formal nonmonotonic reasoning in 1980.
Answer Set Planning
"... In "answer set programming," solutions to a problem are represented by answer sets, and not by answer substitutions produced in response to a query, as in conventional logic programming. Instead of Prolog, answer set programming uses software systems capable of computing answer sets. This ..."
Abstract

Cited by 169 (5 self)
 Add to MetaCart
(Show Context)
In "answer set programming," solutions to a problem are represented by answer sets, and not by answer substitutions produced in response to a query, as in conventional logic programming. Instead of Prolog, answer set programming uses software systems capable of computing answer sets. This paper is about applications of this idea to planning.
Nested expressions in logic programs
 Annals of Mathematics and Artificial Intelligence
, 1999
"... We extend the answer set semantics to a class of logic programs with nested expressions permitted in the bodies and heads of rules. These expressions are formed from literals using negation as failure, conjunction (,) and disjunction (;) that can be nested arbitrarily. Conditional expressions are in ..."
Abstract

Cited by 136 (12 self)
 Add to MetaCart
We extend the answer set semantics to a class of logic programs with nested expressions permitted in the bodies and heads of rules. These expressions are formed from literals using negation as failure, conjunction (,) and disjunction (;) that can be nested arbitrarily. Conditional expressions are introduced as abbreviations. The study of equivalent transformations of programs with nested expressions shows that any such program is equivalent to a set of disjunctive rules, possibly with negation as failure in the heads. The generalized answer set semantics is related to the LloydTopor generalization of Clark's completion and to the logic of minimal belief and negation as failure.
Unfolding Partiality and Disjunctions in Stable Model Semantics
 Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2000), April 1215
, 2000
"... The paper studies an implementation methodology for partial and disjunctive stable models where partiality and disjunctions are unfolded from a logic program so that an implementation of stable models for normal (disjunctionfree) programs can be used as the core inference engine. The unfolding is d ..."
Abstract

Cited by 99 (17 self)
 Add to MetaCart
The paper studies an implementation methodology for partial and disjunctive stable models where partiality and disjunctions are unfolded from a logic program so that an implementation of stable models for normal (disjunctionfree) programs can be used as the core inference engine. The unfolding is done in two separate steps. Firstly, it is shown that partial stable models can be captured by total stable models using a simple linear and modular program transformation. Hence, reasoning tasks concerning partial models can be solved using an implementation of total models. Disjunctive partial stable models have been lacking implementations which now become available as the translation handles also the disjunctive case. Secondly, it is shown how total stable models of disjunctive programs can be determined by computing stable models for normal programs. Hence, an implementation of stable models of normal programs can be used as a core engine for implementing disjunctiv...
Logic Programming and Knowledge Representation  the AProlog perspective
 Artificial Intelligence
, 2002
"... In this paper we give a short introduction to logic programming approach to knowledge representation and reasoning. The intention is to help the reader to develop a 'feel' for the field's history and some of its recent developments. The discussion is mainly limited to logic programs u ..."
Abstract

Cited by 98 (1 self)
 Add to MetaCart
(Show Context)
In this paper we give a short introduction to logic programming approach to knowledge representation and reasoning. The intention is to help the reader to develop a 'feel' for the field's history and some of its recent developments. The discussion is mainly limited to logic programs under the answer set semantics. For understanding of approaches to logic programming build on wellfounded semantics, general theories of argumentation, abductive reasoning, etc., the reader is referred to other publications.
Reasoning Agents In Dynamic Domains
 In Workshop on LogicBased Artificial Intelligence
, 2000
"... The paper discusses an architecture for intelligent agents based on the use of AProlog  a language of logic programs under the answer set semantics. AProlog is used to represent the agent's knowledge about the domain and to formulate the agent's reasoning tasks. We outline how these ta ..."
Abstract

Cited by 95 (30 self)
 Add to MetaCart
The paper discusses an architecture for intelligent agents based on the use of AProlog  a language of logic programs under the answer set semantics. AProlog is used to represent the agent's knowledge about the domain and to formulate the agent's reasoning tasks. We outline how these tasks can be reduced to answering questions about properties of simple logic programs and demonstrate the methodology of constructing these programs. Keywords: Intelligent agents, logic programming and nonmonotonic reasoning. 1 INTRODUCTION This paper is a report on the attempt by the authors to better understand the design of software components of intelligent agents capable of reasoning, planning and acting in a changing environment. The class of such agents includes, but is not limited to, intelligent mobile robots, softbots, immobots, intelligent information systems, expert systems, and decisionmaking systems. The ability to design intelligent agents (IA) is crucial for such diverse tasks as ...
Formalizing sensing actions  A transition function based approach
, 2001
"... In presence of incomplete information about the world we need to distinguish between the state of the world and the state of the agent’s knowledge about the world. In such a case the agent may need to have at its disposal sensing actions that change its state of knowledge about the world and may nee ..."
Abstract

Cited by 94 (29 self)
 Add to MetaCart
In presence of incomplete information about the world we need to distinguish between the state of the world and the state of the agent’s knowledge about the world. In such a case the agent may need to have at its disposal sensing actions that change its state of knowledge about the world and may need to construct more general plans consisting of sensing actions and conditional statements to achieve its goal. In this paper we first develop a highlevel action description language that allows specification of sensing actions and their effects in its domain description and allows queries with conditional plans. We give provably correct translations of domain description in our language to axioms in firstorder logic, and relate our formulation to several earlier formulations in the literature. We then analyze the state space of our formulation and develop several sound approximations that have much smaller state spaces. Finally we define regression of knowledge formulas over conditional plans,