Results 11  20
of
618
Stereo matching using belief propagation
, 2003
"... In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, ..."
Abstract

Cited by 253 (3 self)
 Add to MetaCart
In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the binary process by introducing two robust functions, we apply the belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the Markov network. Other lowlevel visual cues (e.g., image segmentation) can also be easily incorporated in our stereo model to obtain better stereo results. Experiments demonstrate that our methods are comparable to the stateoftheart stereo algorithms for many test cases.
A generalized Gaussian image model for edgepreserving MAP estimation
 IEEE Trans. on Image Processing
, 1993
"... Absfrucf We present a Markov random field model which allows realistic edge modeling while providing stable maximum a posteriori MAP solutions. The proposed model, which we refer to as a generalized Gaussian Markov random field (GGMRF), is named for its similarity to the generalized Gaussian distri ..."
Abstract

Cited by 238 (34 self)
 Add to MetaCart
Absfrucf We present a Markov random field model which allows realistic edge modeling while providing stable maximum a posteriori MAP solutions. The proposed model, which we refer to as a generalized Gaussian Markov random field (GGMRF), is named for its similarity to the generalized Gaussian distribution used in robust detection and estimation. The model satisifies several desirable analytical and computational properties for MAP estimation, including continuous dependence of the estimate on the data, invariance of the character of solutions to scaling of data, and a solution which lies at the unique global minimum of the U posteriori loglikeihood function. The GGMRF is demonstrated to be useful for image reconstruction in lowdosage transmission tomography. I.
Deterministic edgepreserving regularization in computed imaging
 IEEE Trans. Image Processing
, 1997
"... Abstract—Many image processing problems are ill posed and must be regularized. Usually, a roughness penalty is imposed on the solution. The difficulty is to avoid the smoothing of edges, which are very important attributes of the image. In this paper, we first give conditions for the design of such ..."
Abstract

Cited by 231 (23 self)
 Add to MetaCart
Abstract—Many image processing problems are ill posed and must be regularized. Usually, a roughness penalty is imposed on the solution. The difficulty is to avoid the smoothing of edges, which are very important attributes of the image. In this paper, we first give conditions for the design of such an edgepreserving regularization. Under these conditions, we show that it is possible to introduce an auxiliary variable whose role is twofold. First, it marks the discontinuities and ensures their preservation from smoothing. Second, it makes the criterion halfquadratic. The optimization is then easier. We propose a deterministic strategy, based on alternate minimizations on the image and the auxiliary variable. This leads to the definition of an original reconstruction algorithm, called ARTUR. Some theoretical properties of ARTUR are discussed. Experimental results illustrate the behavior of the algorithm. These results are shown in the field of tomography, but this method can be applied in a large number of applications in image processing. I.
Constructing Simple Stable Descriptions for Image Partitioning
, 1994
"... A new formulation of the image partitioning problem is presented: construct a complete and stable description of an image, in terms of a specified descriptive language, that is simplest in the sense of being shortest. We show that a descriptive language limited to a loworder polynomial description ..."
Abstract

Cited by 223 (5 self)
 Add to MetaCart
A new formulation of the image partitioning problem is presented: construct a complete and stable description of an image, in terms of a specified descriptive language, that is simplest in the sense of being shortest. We show that a descriptive language limited to a loworder polynomial description of the intensity variation within each region and a chaincodelike description of the region boundaries yields intuitively satisfying partitions for a wide class of images. The advantage of this formulation is that it can be extended to deal with subsequent steps of the imageunderstanding problem (or to deal with other image attributes, such as texture) in a natural way by augmenting the descriptive language. Experiments performed on a variety of both real and synthetic images demonstrate the superior performance of this approach over partitioning techniques based on clustering vectors of local image attributes and standard edgedetection techniques. 1 Introduction The partitioning proble...
A database and evaluation methodology for optical flow
 In Proceedings of the IEEE International Conference on Computer Vision
, 2007
"... The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex n ..."
Abstract

Cited by 219 (16 self)
 Add to MetaCart
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the groundtruth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high framerate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several wellknown methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at
SUSAN  A New Approach to Low Level Image Processing
 International Journal of Computer Vision
, 1995
"... This paper describes a new approach to low level image processing; in particular, edge and corner detection and structure preserving noise reduction. ..."
Abstract

Cited by 205 (3 self)
 Add to MetaCart
This paper describes a new approach to low level image processing; in particular, edge and corner detection and structure preserving noise reduction.
A maximum likelihood stereo algorithm
 Computer Vision and Image Understanding
, 1996
"... A stereo algorithm is presented that optimizes a maximum likelihood cost function. The maximum likelihood cost function assumes that corresponding features in the left and right images are Normally distributed about a common true value and consists of a weighted squared error term if two features ar ..."
Abstract

Cited by 197 (2 self)
 Add to MetaCart
A stereo algorithm is presented that optimizes a maximum likelihood cost function. The maximum likelihood cost function assumes that corresponding features in the left and right images are Normally distributed about a common true value and consists of a weighted squared error term if two features are matched or a ( xed) cost if a feature is determined to be occluded. The stereo algorithm nds the set of correspondences that maximize the cost function subject to ordering and uniqueness constraints. The stereo algorithm is independent of the matching primitives. However, for the experiments described in this paper, matching is performed on the individual pixel intensities. Contrary to popular belief, the pixelbased stereo appears to be robust for a variety of images. It also has the advantages of (i) providing a dense disparity map, (ii) requiring no feature extraction and (iii) avoiding the adaptive windowing problem of areabased correlation methods. Because feature extraction and windowing are unnecessary, avery fast implementation is possible. Experimental results reveal that good stereo correspondences can be found using only ordering and uniqueness constraints, i.e. without local smoothness constraints. However, it is shown that the original maximum likelihood stereo algorithm exhibits multiple global minima. The dynamic programming algorithm is guaranteed to nd one, but not necessarily the same one for each epipolar scanline causing erroneous
Cardboard people: A parameterized model of articulated image motion
, 1996
"... In this paper we extend the work of Black and Yacoob [5] on tracking and recognition of human facial expressions to the problem of tracking and recognizing the articulated motion of human limbs. We make the assumption that a person ..."
Abstract

Cited by 196 (17 self)
 Add to MetaCart
In this paper we extend the work of Black and Yacoob [5] on tracking and recognition of human facial expressions to the problem of tracking and recognizing the articulated motion of human limbs. We make the assumption that a person
Minimax Entropy Principle and Its Application to Texture Modeling
, 1997
"... This article proposes a general theory and methodology, called the minimax entropy principle, for building statistical models for images (or signals) in a variety of applications. This principle consists of two parts. The first is the maximum entropy principle for feature binding (or fusion): for a ..."
Abstract

Cited by 193 (39 self)
 Add to MetaCart
This article proposes a general theory and methodology, called the minimax entropy principle, for building statistical models for images (or signals) in a variety of applications. This principle consists of two parts. The first is the maximum entropy principle for feature binding (or fusion): for a certain set of feature statistics, a distribution can be built to bind these feature statistics together by maximizing the entropy over all distributions that reproduce these feature statistics. The second part is the minimum entropy principle for feature selection: among all plausible sets of feature statistics, we choose the set whose maximum entropy distribution has the minimum entropy. Computational and inferential issues in both parts are addressed, in particular, a feature pursuit procedure is proposed for approximately selecting the optimal set of features. The model complexity is restricted because of the sample variation in the observed feature statistics. The minimax entropy principle is applied to texture modeling, where a novel Markov random field (MRF) model, called FRAME (Filter, Random field, And Minimax Entropy), is derived, and encouraging results are obtained in experiments on a variety of texture images. Relationship between our theory and the mechanisms of neural computation is also discussed.
On the Unification Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision
, 1996
"... The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent interest i ..."
Abstract

Cited by 190 (8 self)
 Add to MetaCart
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a "line process" to that of an analog "outlier process" and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlierprocess formulation exists and give a straightforward method for converting a robust estimation problem into an outlierprocess formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlierprocess formulation. These results indicate that the outlierprocess approach provides a general framework which subsumes the traditional lineprocess approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlierprocess formulations.