Results 1  10
of
11
Notions of Computation and Monads
, 1991
"... The i.calculus is considered a useful mathematical tool in the study of programming languages, since programs can be identified with Iterms. However, if one goes further and uses bnconversion to prove equivalence of programs, then a gross simplification is introduced (programs are identified with ..."
Abstract

Cited by 730 (15 self)
 Add to MetaCart
The i.calculus is considered a useful mathematical tool in the study of programming languages, since programs can be identified with Iterms. However, if one goes further and uses bnconversion to prove equivalence of programs, then a gross simplification is introduced (programs are identified with total functions from calues to values) that may jeopardise the applicability of theoretical results, In this paper we introduce calculi. based on a categorical semantics for computations, that provide a correct basis for proving equivalence of programs for a wide range of notions of computation.
Computational LambdaCalculus and Monads
, 1988
"... The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the ..."
Abstract

Cited by 439 (6 self)
 Add to MetaCart
The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the applicability of theoretical results to real situations. In this paper we introduce a new calculus based on a categorical semantics for computations. This calculus provides a correct basis for proving equivalence of programs, independent from any specific computational model. 1 Introduction This paper is about logics for reasoning about programs, in particular for proving equivalence of programs. Following a consolidated tradition in theoretical computer science we identify programs with the closed terms, possibly containing extra constants, corresponding to some features of the programming language under consideration. There are three approaches to proving equivalence of programs: ffl T...
Equivalence in Functional Languages with Effects
, 1991
"... Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying ..."
Abstract

Cited by 112 (13 self)
 Add to MetaCart
Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying many of the usual laws. Combined with other recent work this provides evidence that expressive, mathematically clean programming languages are indeed possible. 1. Overview Real programs have effectscreating new structures, examining and modifying existing structures, altering flow of control, etc. Such facilities are important not only for optimization, but also for communication, clarity, and simplicity in programming. Thus it is important to be able to reason both informally and formally about programs with effects, and not to sweep effects either to the side or under the store parameter rug. Recent work of Talcott, Mason, Felleisen, and Moggi establishes a mathematical foundation for...
Intuitionistic Reasoning about Shared Mutable Data Structure
 Millennial Perspectives in Computer Science
, 2000
"... Drawing upon early work by Burstall, we extend Hoare's approach to proving the correctness of imperative programs, to deal with programs that perform destructive updates to data structures containing more than one pointer to the same location. The key concept is an "independent conjunction" P & ..."
Abstract

Cited by 107 (5 self)
 Add to MetaCart
Drawing upon early work by Burstall, we extend Hoare's approach to proving the correctness of imperative programs, to deal with programs that perform destructive updates to data structures containing more than one pointer to the same location. The key concept is an "independent conjunction" P & Q that holds only when P and Q are both true and depend upon distinct areas of storage. To make this concept precise we use an intuitionistic logic of assertions, with a Kripke semantics whose possible worlds are heaps (mapping locations into tuples of values).
A Variable Typed Logic of Effects
 Information and Computation
, 1993
"... In this paper we introduce a variable typed logic of effects inspired by the variable type systems of Feferman for purely functional languages. VTLoE (Variable Typed Logic of Effects) is introduced in two stages. The first stage is the firstorder theory of individuals built on assertions of equalit ..."
Abstract

Cited by 48 (12 self)
 Add to MetaCart
In this paper we introduce a variable typed logic of effects inspired by the variable type systems of Feferman for purely functional languages. VTLoE (Variable Typed Logic of Effects) is introduced in two stages. The first stage is the firstorder theory of individuals built on assertions of equality (operational equivalence `a la Plotkin), and contextual assertions. The second stage extends the logic to include classes and class membership. The logic we present provides an expressive language for defining and studying properties of programs including program equivalences, in a uniform framework. The logic combines the features and benefits of equational calculi as well as program and specification logics. In addition to the usual firstorder formula constructions, we add contextual assertions. Contextual assertions generalize Hoare's triples in that they can be nested, used as assumptions, and their free variables may be quantified. They are similar in spirit to program modalities in ...
Inferring the Equivalence of Functional Programs that Mutate Data
 Theoretical Computer Science
, 1992
"... this paper we study the constrained equivalence of programs with effects. In particular, we present a formal system for deriving such equivalences. Constrained equivalence is defined via a model theoretic characterization of operational, or observational, equivalence called strong isomorphism. Opera ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
this paper we study the constrained equivalence of programs with effects. In particular, we present a formal system for deriving such equivalences. Constrained equivalence is defined via a model theoretic characterization of operational, or observational, equivalence called strong isomorphism. Operational equivalence, as introduced by Morris [23] and Plotkin [27], treats programs as black boxes. Two expressions are operationally equivalent if they are indistinguishable in all program contexts. This equivalence is the basis for soundness results for program calculi and program transformation theories. Strong isomorphism, as introduced by Mason [14], also treats programs as black boxes. Two expressions are strongly isomorphic if in all memory states they return the same value, and have the same effect on memory (modulo the production of garbage). Strong isomorphism implies operational equivalence. The converse is true for firstorder languages; it is false for full higherorder languages. However, even in the higherorder case, it remains an useful tool for establishing equivalence. Since strong isomorphism is defined by quantifying over memory states, rather than program contexts, it is a simple matter to restrict this equivalence to those memory states which satisfy a set of constraints. It is for this reason that strong isomorphism is a useful relation, even in the higherorder case. The formal system we present defines a singleconclusion consequence relation \Sigma ` \Phi where \Sigma is a finite set of constraints and \Phi is an assertion. The semantics of the formal system is given by a semantic consequence relation, \Sigma j= \Phi, defined in terms of a class of memory models for assertions and constraints. The assertions we consider are of the following two forms...
Reasoning about Functions with Effects
 See Gordon and Pitts
, 1997
"... ing and using (Lunif) we have that any two lambdas that are everywhere undefined are equivalent. The classic example of an everywhere undefined lambda is Bot 4 = x:app(x:app(x; x); x:app(x; x)) In f , another example of an everywhere undefined lambda is the "doforever" loop. Do 4 = f:Yv(Dox ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
ing and using (Lunif) we have that any two lambdas that are everywhere undefined are equivalent. The classic example of an everywhere undefined lambda is Bot 4 = x:app(x:app(x; x); x:app(x; x)) In f , another example of an everywhere undefined lambda is the "doforever" loop. Do 4 = f:Yv(Dox:Do(f(x)) By the recursive definition, for any lambda ' and value v Do(')(v) \Gamma!Ø Do(')('(v)) Reasoning about Functions with Effects 21 In f , either '(v) \Gamma!Ø v 0 for some v 0 or '(v) is undefined. In the latter case the computation is undefined since the redex is undefined. In the former case, the computation reduces to Do(')(v 0 ) and on we go. The argument for undefinedness of Bot relies only on the (app) rule and will be valid in any uniform semantics. In contrast the argument for undefinedness of Do(') relies on the (fred.isdef) property of f . Functional Streams We now illustrate the use of (Lunifsim) computation to reason about streams represented as functions ...
Calculational Derivation of Pointer Algorithms from Tree Operations
 Science of Computer Programming
, 1998
"... We describe an approach to the derivation of correct algorithms on treebased pointer structures. The approach is based on enriching trees in a way that allows us to model commonlyused pointer manipulations on tree structures. ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
We describe an approach to the derivation of correct algorithms on treebased pointer structures. The approach is based on enriching trees in a way that allows us to model commonlyused pointer manipulations on tree structures.
Programming with Variable Functions
 In Proceedings of the 1998 ACM SIGPLAN International Conference on Functional Programming
, 1998
"... What is a good method to specify and derive imperative programs? This paper argues that a new form of functional programming fits the bill, where variable functions can be updated at specified points in their domain. Traditional algebraic specification and functional programming are a powerful pair ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
What is a good method to specify and derive imperative programs? This paper argues that a new form of functional programming fits the bill, where variable functions can be updated at specified points in their domain. Traditional algebraic specification and functional programming are a powerful pair of tools for specifying and implementing domains of discourse and operations on them. Recent work on evolving algebras has introduced the function update in algebraic specifications, and has applied it with good success in the modelling of reactive systems. We show that similar concepts allow one to derive efficient programs in a systematic way from functional specifications. The final outcome of such a derivation can be made as efficient as a traditional imperative program with pointers, but can still be reasoned about at a high level. Variable functions can also play an important role in the structuring of large systems. They can subsume objectoriented programming languages, without incu...
Functional pearl: Unfolding pointer algorithms
 Journal of Functional Programming
, 2001
"... A fair amount has been written on the subject of reasoning about pointer algorithms. There was a peak about 1980 when everyone seemed to be tackling the formal verification of the Schorr–Waite marking algorithm, including Gries (1979, Morris (1982) and Topor (1979). Bornat (2000) writes: “The Schorr ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
A fair amount has been written on the subject of reasoning about pointer algorithms. There was a peak about 1980 when everyone seemed to be tackling the formal verification of the Schorr–Waite marking algorithm, including Gries (1979, Morris (1982) and Topor (1979). Bornat (2000) writes: “The Schorr–Waite algorithm is the