Results 1 
2 of
2
Binary models for marginal independence
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B
, 2005
"... A number of authors have considered multivariate Gaussian models for marginal independence. In this paper we develop models for binary data with the same independence structure. The models can be parameterized based on Möbius inversion and maximum likelihood estimation can be performed using a versi ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
A number of authors have considered multivariate Gaussian models for marginal independence. In this paper we develop models for binary data with the same independence structure. The models can be parameterized based on Möbius inversion and maximum likelihood estimation can be performed using a version of the Iterated Conditional Fitting algorithm. The approach is illustrated on a simple example. Relations to multivariate logistic and dependence ratio models are discussed.
Discrete chain graph models
 Bernoulli
, 2009
"... The statistical literature discusses different types of Markov properties for chain graphs that lead to four possible classes of chain graph Markov models. The different models are rather well understood when the observations are continuous and multivariate normal, and it is also known that one mode ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
The statistical literature discusses different types of Markov properties for chain graphs that lead to four possible classes of chain graph Markov models. The different models are rather well understood when the observations are continuous and multivariate normal, and it is also known that one model class, referred to as models of LWF (Lauritzen–Wermuth–Frydenberg) or block concentration type, yields discrete models for categorical data that are smooth. This paper considers the structural properties of the discrete models based on the three alternative Markov properties. It is shown by example that two of the alternative Markov properties can lead to nonsmooth models. The remaining model class, which can be viewed as a discrete version of multivariate regressions, is proven to comprise only smooth models. The proof employs a simple change of coordinates that also reveals that the model’s likelihood function is unimodal if the chain components of the graph are complete sets.