Results 1  10
of
24
The Semantics of Reflected Proof
 IN PROC. OF FIFTH SYMP. ON LOGIC IN COMP. SCI
, 1990
"... We begin to lay the foundations for reasoning about proofs whose steps include both invocations of programs to build subproofs (tactics) and references to representations of proofs themselves (reflected proofs). The main result is the definition of a single type of proof which can mention itself, ..."
Abstract

Cited by 88 (11 self)
 Add to MetaCart
We begin to lay the foundations for reasoning about proofs whose steps include both invocations of programs to build subproofs (tactics) and references to representations of proofs themselves (reflected proofs). The main result is the definition of a single type of proof which can mention itself, using a new technique which finds a fixed point of a mapping between metalanguage and object language. This single type contrasts with hierarchies of types used in other approaches to accomplish the same classification. We show that these proofs are valid, and that every proof can be reduced to a proof involving only primitive inference rules. We also show how to extend the results to proofs from which programs (such as tactics) can be derived, and to proofs that can refer to a library of definitions and previously proven theorems. We believe that the mechanism of reflection is fundamental in building proof development systems, and we illustrate its power with applications to automating reasoning and describing modes of computation.
Extending Classical Logic with Inductive Definitions
, 2000
"... The goal of this paper is to extend classical logic with a generalized notion of inductive definition supporting positive and negative induction, to investigate the properties of this logic, its relationships to other logics in the area of nonmonotonic reasoning, logic programming and deductiv ..."
Abstract

Cited by 58 (38 self)
 Add to MetaCart
The goal of this paper is to extend classical logic with a generalized notion of inductive definition supporting positive and negative induction, to investigate the properties of this logic, its relationships to other logics in the area of nonmonotonic reasoning, logic programming and deductive databases, and to show its application for knowledge representation by giving a typology of definitional knowledge.
The Wellfounded Semantics Is the Principle of Inductive Definition
 Logics in Arti Intelligence
, 1998
"... . Existing formalisations of (transfinite) inductive definitions in constructive mathematics are reviewed and strong correspondences with LP under least model and perfect model semantics become apparent. I point to fundamental restrictions of these existing formalisations and argue that the wellfou ..."
Abstract

Cited by 43 (26 self)
 Add to MetaCart
. Existing formalisations of (transfinite) inductive definitions in constructive mathematics are reviewed and strong correspondences with LP under least model and perfect model semantics become apparent. I point to fundamental restrictions of these existing formalisations and argue that the wellfounded semantics (wfs) overcomes these problems and hence, provides a superior formalisation of the principle of inductive definition. The contribution of this study for LP is that it (re )introduces the knowledge theoretic interpretation of LP as a logic for representing definitional knowledge. I point to fundamental differences between this knowledge theoretic interpretation of LP and the more commonly known interpretations of LP as default theories or autoepistemic theories. The relevance is that differences in knowledge theoretic interpretation have strong impact on knowledge representation methodology and on extensions of the LP formalism, for example for representing uncertainty. Keywo...
Logic programming revisited: logic programs as inductive definitions
 ACM Transactions on Computational Logic
, 2001
"... Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to ..."
Abstract

Cited by 34 (21 self)
 Add to MetaCart
Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to identify a unique canonical, preferred or intended model among the models of the program and to appeal to common sense to validate the choice of such model. Another line of research developed the view of logic programming as a nonmonotonic reasoning formalism strongly related to Default Logic and Autoepistemic Logic. These competing approaches have resulted in some confusion about the declarative meaning of logic programming. This paper investigates the problem and proposes an alternative epistemological foundation for the canonical model approach, which is not based on common sense but on a solid mathematical information principle. The thesis is developed that logic programming can be understood as a natural and general logic of inductive definitions. In particular, logic programs with negation represent nonmonotone inductive definitions. It is argued that this thesis results in an alternative justification of the wellfounded model as the unique intended model of the logic program. In addition, it equips logic programs with an easy to comprehend meaning
A logic of nonmonotone inductive definitions
 ACM transactions on computational logic
, 2007
"... Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated i ..."
Abstract

Cited by 28 (16 self)
 Add to MetaCart
Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated induction. Just as the principle of positive induction has been formalized in FO(LFP), and the principle of inflationary induction has been formalized in FO(IFP), this paper formalizes the principle of iterated induction in a new logic for NonMonotone Inductive Definitions (IDlogic). The semantics of the logic is strongly influenced by the wellfounded semantics of logic programming. This paper discusses the formalisation of different forms of (non)monotone induction by the wellfounded semantics and illustrates the use of the logic for formalizing mathematical and commonsense knowledge. To model different types of induction found in mathematics, we define several subclasses of definitions, and show that they are correctly formalized by the wellfounded semantics. We also present translations into classical first or second order logic. We develop modularity and totality results and demonstrate their use to analyze and simplify complex definitions. We illustrate the use of the logic for temporal reasoning. The logic formally extends Logic Programming, Abductive Logic Programming and Datalog, and thus formalizes the view on these formalisms as logics of (generalized) inductive definitions. Categories and Subject Descriptors:... [...]:... 1.
Deliverables: A Categorical Approach to Program Development in Type Theory
, 1992
"... This thesis considers the problem of program correctness within a rich theory of dependent types, the Extended Calculus of Constructions (ECC). This system contains a powerful programming language of higherorder primitive recursion and higherorder intuitionistic logic. It is supported by Pollack's ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
This thesis considers the problem of program correctness within a rich theory of dependent types, the Extended Calculus of Constructions (ECC). This system contains a powerful programming language of higherorder primitive recursion and higherorder intuitionistic logic. It is supported by Pollack's versatile LEGO implementation, which I use extensively to develop the mathematical constructions studied here. I systematically investigate Burstall's notion of deliverable, that is, a program paired with a proof of correctness. This approach separates the concerns of programming and logic, since I want a simple program extraction mechanism. The \Sigmatypes of the calculus enable us to achieve this. There are many similarities with the subset interpretation of MartinLof type theory. I show that deliverables have a rich categorical structure, so that correctness proofs may be decomposed in a principled way. The categorical combinators which I define in the system package up much logical bo...
An Inductive Definition Approach to Ramifications
 IN ELECTRONIC TRANSACTIONS ON ARTIFICIAL INTELLIGENCE
, 1998
"... ..."
On Bounded Set Theory
"... We consider some Bounded Set Theories (BST), which are analogues to Bounded Arithmetic. Corresponding provablyrecursive operations over sets are characterized in terms of explicit definability and PTIME or LOGSPACEcomputability. We also present some conservativity results and describe a relation ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
We consider some Bounded Set Theories (BST), which are analogues to Bounded Arithmetic. Corresponding provablyrecursive operations over sets are characterized in terms of explicit definability and PTIME or LOGSPACEcomputability. We also present some conservativity results and describe a relation between BST, possibly with AntiFoundation Axiom, and a Logic of Inductive Definitions (LID) and Finite Model Theory.
The AntiFoundation Axiom In Constructive Set Theories
 Stanford University Press
, 2003
"... . The paper investigates the strength of the antifoundation axiom on the basis of various systems of constructive set theories. 1. Introduction Intrinsically circular phenomena have come to the attention of researchers in differing fields such as mathematical logic, computer science, artificial inte ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
. The paper investigates the strength of the antifoundation axiom on the basis of various systems of constructive set theories. 1. Introduction Intrinsically circular phenomena have come to the attention of researchers in differing fields such as mathematical logic, computer science, artificial intelligence, linguistics, cognitive science, and philosophy. Logicians first explored set theories whose universe contains what are called nonwellfounded sets, or hypersets (cf. [17], [5]). But the area was considered rather exotic until these theories were put to use in developing rigorous accounts of circular notions in computer science (cf. [7]). Instead of the Foundation Axiom these set theories adopt the socalled AntiFoundation Axiom, AFA, which gives rise to a rich universe of sets. AFA provides an elegant tool for modeling all sorts of circular phenomena. The application areas range from knowledge representation and theoretical economics to the semantics of natural language and pr...