Results 1  10
of
121
A DecisionTheoretic Generalization of onLine Learning and an Application to Boosting
, 1997
"... In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worstcase online framework. The model we study can be interpreted as a broad, abstract extension of the wellstudied online prediction model to a general decisiontheoretic set ..."
Abstract

Cited by 2307 (59 self)
 Add to MetaCart
In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worstcase online framework. The model we study can be interpreted as a broad, abstract extension of the wellstudied online prediction model to a general decisiontheoretic setting. We show that the multiplicative weightupdate rule of Littlestone and Warmuth [20] can be adapted to this model yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems. We show how the resulting learning algorithm can be applied to a variety of problems, including gambling, multipleoutcome prediction, repeated games and prediction of points in R n . In the second part of the paper we apply the multiplicative weightupdate technique to derive a new boosting algorithm. This boosting algorithm does not require any prior knowledge about the performance of the weak learning algorithm. We also study generalizations of...
Universal prediction
 IEEE Transactions on Information Theory
, 1998
"... Abstract — This paper consists of an overview on universal prediction from an informationtheoretic perspective. Special attention is given to the notion of probability assignment under the selfinformation loss function, which is directly related to the theory of universal data compression. Both th ..."
Abstract

Cited by 136 (11 self)
 Add to MetaCart
Abstract — This paper consists of an overview on universal prediction from an informationtheoretic perspective. Special attention is given to the notion of probability assignment under the selfinformation loss function, which is directly related to the theory of universal data compression. Both the probabilistic setting and the deterministic setting of the universal prediction problem are described with emphasis on the analogy and the differences between results in the two settings. Index Terms — Bayes envelope, entropy, finitestate machine, linear prediction, loss function, probability assignment, redundancycapacity, stochastic complexity, universal coding, universal prediction. I.
Efficient Algorithms for Online Decision Problems
 J. Comput. Syst. Sci
, 2003
"... In an online decision problem, one makes a sequence of decisions without knowledge of the future. Tools from learning such as Weighted Majority and its many variants [13, 18, 4] demonstrate that online algorithms can perform nearly as well as the best single decision chosen in hindsight, even when t ..."
Abstract

Cited by 136 (3 self)
 Add to MetaCart
In an online decision problem, one makes a sequence of decisions without knowledge of the future. Tools from learning such as Weighted Majority and its many variants [13, 18, 4] demonstrate that online algorithms can perform nearly as well as the best single decision chosen in hindsight, even when there are exponentially many possible decisions. However, the naive application of these algorithms is inefficient for such large problems. For some problems with nice structure, specialized efficient solutions have been developed [10, 16, 17, 6, 3].
SCHAPIRE: Adaptive game playing using multiplicative weights
 Games and Economic Behavior
, 1999
"... We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the mult ..."
Abstract

Cited by 134 (14 self)
 Add to MetaCart
We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the multiplicativeweight methods of Littlestone and Warmuth, is analyzed using the Kullback–Liebler divergence. This analysis yields a new, simple proof of the min–max theorem, as well as a provable method of approximately solving a game. A variant of our gameplaying algorithm is proved to be optimal in a very strong sense. Journal of Economic Literature
Logarithmic regret algorithms for online convex optimization
 In 19’th COLT
, 2006
"... Abstract. In an online convex optimization problem a decisionmaker makes a sequence of decisions, i.e., choose a sequence of points in Euclidean space, from a fixed feasible set. After each point is chosen, it encounters an sequence of (possibly unrelated) convex cost functions. Zinkevich [Zin03] i ..."
Abstract

Cited by 123 (26 self)
 Add to MetaCart
Abstract. In an online convex optimization problem a decisionmaker makes a sequence of decisions, i.e., choose a sequence of points in Euclidean space, from a fixed feasible set. After each point is chosen, it encounters an sequence of (possibly unrelated) convex cost functions. Zinkevich [Zin03] introduced this framework, which models many natural repeated decisionmaking problems and generalizes many existing problems such as Prediction from Expert Advice and Cover’s Universal Portfolios. Zinkevich showed that a simple online gradient descent algorithm achieves additive regret O ( √ T), for an arbitrary sequence of T convex cost functions (of bounded gradients), with respect to the best single decision in hindsight. In this paper, we give algorithms that achieve regret O(log(T)) for an arbitrary sequence of strictly convex functions (with bounded first and second derivatives). This mirrors what has been done for the special cases of prediction from expert advice by Kivinen and Warmuth [KW99], and Universal Portfolios by Cover [Cov91]. We propose several algorithms achieving logarithmic regret, which besides being more general are also much more efficient to implement. The main new ideas give rise to an efficient algorithm based on the Newton method for optimization, a new tool in the field. Our analysis shows a surprising connection to followtheleader method, and builds on the recent work of Agarwal and Hazan [AH05]. We also analyze other algorithms, which tie together several different previous approaches including followtheleader, exponential weighting, Cover’s algorithm and gradient descent. 1
Relative Loss Bounds for Online Density Estimation with the Exponential Family of Distributions
 MACHINE LEARNING
, 2000
"... We consider online density estimation with a parameterized density from the exponential family. The online algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss, which is the n ..."
Abstract

Cited by 116 (11 self)
 Add to MetaCart
We consider online density estimation with a parameterized density from the exponential family. The online algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss, which is the negative loglikelihood of the example with respect to the past parameter of the algorithm. An oline algorithm can choose the best parameter based on all the examples. We prove bounds on the additional total loss of the online algorithm over the total loss of the best oline parameter. These relative loss bounds hold for an arbitrary sequence of examples. The goal is to design algorithms with the best possible relative loss bounds. We use a Bregman divergence to derive and analyze each algorithm. These divergences are relative entropies between two exponential distributions. We also use our methods to prove relative loss bounds for linear regression.
Regret in the Online Decision Problem
, 1999
"... At each point in time a decision maker must choose a decision. The payoff in a period from the decision chosen depends on the decision as well as the state of the world that obtains at that time. The difficulty is that the decision must be made in advance of any knowledge, even probabilistic, about ..."
Abstract

Cited by 115 (2 self)
 Add to MetaCart
At each point in time a decision maker must choose a decision. The payoff in a period from the decision chosen depends on the decision as well as the state of the world that obtains at that time. The difficulty is that the decision must be made in advance of any knowledge, even probabilistic, about which state of the world will obtain. A range of problems from a variety of disciplines can be framed in this way. In this
Using and combining predictors that specialize
 In 29th STOC
, 1997
"... Abstract. We study online learning algorithms that predict by combining the predictions of several subordinate prediction algorithms, sometimes called “experts. ” These simple algorithms belong to the multiplicative weights family of algorithms. The performance of these algorithms degrades only loga ..."
Abstract

Cited by 93 (13 self)
 Add to MetaCart
Abstract. We study online learning algorithms that predict by combining the predictions of several subordinate prediction algorithms, sometimes called “experts. ” These simple algorithms belong to the multiplicative weights family of algorithms. The performance of these algorithms degrades only logarithmically with the number of experts, making them particularly useful in applications where the number of experts is very large. However, in applications such as text categorization, it is often natural for some of the experts to abstain from making predictions on some of the instances. We show how to transform algorithms that assume that all experts are always awake to algorithms that do not require this assumption. We also show how to derive corresponding loss bounds. Our method is very general, and can be applied to a large family of online learning algorithms. We also give applications to various prediction models including decision graphs and “switching ” experts. 1
Universal Portfolios with Side Information
 IEEE Transactions on Information Theory
, 1996
"... We present a sequential investment algorithm, the ¯weighted universal portfolio with sideinformation, which achieves, to first order in the exponent, the same wealth as the best sideinformation dependent investment strategy (the best stateconstant rebalanced portfolio) determined in hindsight fr ..."
Abstract

Cited by 85 (3 self)
 Add to MetaCart
We present a sequential investment algorithm, the ¯weighted universal portfolio with sideinformation, which achieves, to first order in the exponent, the same wealth as the best sideinformation dependent investment strategy (the best stateconstant rebalanced portfolio) determined in hindsight from observed market and sideinformation outcomes. This is an individual sequence result which shows that the difference between the exponential growth rates of wealth of the best stateconstant rebalanced portfolio and the universal portfolio with sideinformation is uniformly less than (d=(2n)) log(n + 1) + (k=n) log 2 for every stock market and sideinformation sequence and for all time n. Here d = k(m \Gamma 1) is the number of degrees of freedom in the stateconstant rebalanced portfolio with k states of sideinformation and m stocks. The proof of this result establishes a close connection between universal investment and universal data compression. Keywords: Universal investment, univ...
Online portfolio selection using multiplicative updates
 Mathematical Finance
, 1998
"... We present an online investment algorithm which achieves almost the same wealth as the best constantrebalanced portfolio determined in hindsight from the actual market outcomes. The algorithm employs a multiplicative update rule derived using a framework introduced by Kivinen and Warmuth. Our algo ..."
Abstract

Cited by 80 (10 self)
 Add to MetaCart
We present an online investment algorithm which achieves almost the same wealth as the best constantrebalanced portfolio determined in hindsight from the actual market outcomes. The algorithm employs a multiplicative update rule derived using a framework introduced by Kivinen and Warmuth. Our algorithm is very simple to implement and requires only constant storage and computing time per stock ineach trading period. We tested the performance of our algorithm on real stock data from the New York Stock Exchange accumulated during a 22year period. On this data, our algorithm clearly outperforms the best single stock aswell as Cover's universal portfolio selection algorithm. We also present results for the situation in which the We present an online investment algorithm which achieves almost the same wealth as the best constantrebalanced portfolio investment strategy. The algorithm employsamultiplicative update rule derived using a framework introduced by Kivinen and Warmuth [20]. Our algorithm is very simple to implement and its time and storage requirements grow linearly in the number of stocks.