Results 1  10
of
88
Universal prediction
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... This paper consists of an overview on universal prediction from an informationtheoretic perspective. Special attention is given to the notion of probability assignment under the selfinformation loss function, which is directly related to the theory of universal data compression. Both the probabili ..."
Abstract

Cited by 136 (11 self)
 Add to MetaCart
This paper consists of an overview on universal prediction from an informationtheoretic perspective. Special attention is given to the notion of probability assignment under the selfinformation loss function, which is directly related to the theory of universal data compression. Both the probabilistic setting and the deterministic setting of the universal prediction problem are described with emphasis on the analogy and the differences between results in the two settings.
Adaptive game playing using multiplicative weights
 GAMES AND ECONOMIC BEHAVIOR
, 1999
"... We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the mult ..."
Abstract

Cited by 132 (14 self)
 Add to MetaCart
We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the multiplicativeweight methods of Littlestone and Warmuth, is analyzed using the Kullback–Liebler divergence. This analysis yields a new, simple proof of the min–max theorem, as well as a provable method of approximately solving a game. A variant of our gameplaying algorithm is proved to be optimal in a very strong sense.
Relative Loss Bounds for Online Density Estimation with the Exponential Family of Distributions
 MACHINE LEARNING
, 2000
"... We consider online density estimation with a parameterized density from the exponential family. The online algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss, which is the n ..."
Abstract

Cited by 116 (10 self)
 Add to MetaCart
We consider online density estimation with a parameterized density from the exponential family. The online algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss, which is the negative loglikelihood of the example with respect to the past parameter of the algorithm. An oline algorithm can choose the best parameter based on all the examples. We prove bounds on the additional total loss of the online algorithm over the total loss of the best oline parameter. These relative loss bounds hold for an arbitrary sequence of examples. The goal is to design algorithms with the best possible relative loss bounds. We use a Bregman divergence to derive and analyze each algorithm. These divergences are relative entropies between two exponential distributions. We also use our methods to prove relative loss bounds for linear regression.
A Game of Prediction with Expert Advice
 Journal of Computer and System Sciences
, 1997
"... We consider the following problem. At each point of discrete time the learner must make a prediction; he is given the predictions made by a pool of experts. Each prediction and the outcome, which is disclosed after the learner has made his prediction, determine the incurred loss. It is known that, u ..."
Abstract

Cited by 105 (7 self)
 Add to MetaCart
We consider the following problem. At each point of discrete time the learner must make a prediction; he is given the predictions made by a pool of experts. Each prediction and the outcome, which is disclosed after the learner has made his prediction, determine the incurred loss. It is known that, under weak regularity, the learner can ensure that his cumulative loss never exceeds cL+ a ln n, where c and a are some constants, n is the size of the pool, and L is the cumulative loss incurred by the best expert in the pool. We find the set of those pairs (c; a) for which this is true.
Online portfolio selection using multiplicative updates
 Mathematical Finance
, 1998
"... We present an online investment algorithm which achieves almost the same wealth as the best constantrebalanced portfolio determined in hindsight from the actual market outcomes. The algorithm employs a multiplicative update rule derived using a framework introduced by Kivinen and Warmuth. Our algo ..."
Abstract

Cited by 78 (10 self)
 Add to MetaCart
We present an online investment algorithm which achieves almost the same wealth as the best constantrebalanced portfolio determined in hindsight from the actual market outcomes. The algorithm employs a multiplicative update rule derived using a framework introduced by Kivinen and Warmuth. Our algorithm is very simple to implement and requires only constant storage and computing time per stock ineach trading period. We tested the performance of our algorithm on real stock data from the New York Stock Exchange accumulated during a 22year period. On this data, our algorithm clearly outperforms the best single stock aswell as Cover's universal portfolio selection algorithm. We also present results for the situation in which the We present an online investment algorithm which achieves almost the same wealth as the best constantrebalanced portfolio investment strategy. The algorithm employsamultiplicative update rule derived using a framework introduced by Kivinen and Warmuth [20]. Our algorithm is very simple to implement and its time and storage requirements grow linearly in the number of stocks.
Sequential prediction of individual sequences under general loss functions
 IEEE Trans. Inform. Theory
, 1998
"... ..."
Competitive online statistics
 International Statistical Review
, 1999
"... A radically new approach to statistical modelling, which combines mathematical techniques of Bayesian statistics with the philosophy of the theory of competitive online algorithms, has arisen over the last decade in computer science (to a large degree, under the influence of Dawid’s prequential sta ..."
Abstract

Cited by 65 (10 self)
 Add to MetaCart
A radically new approach to statistical modelling, which combines mathematical techniques of Bayesian statistics with the philosophy of the theory of competitive online algorithms, has arisen over the last decade in computer science (to a large degree, under the influence of Dawid’s prequential statistics). In this approach, which we call “competitive online statistics”, it is not assumed that data are generated by some stochastic mechanism; the bounds derived for the performance of competitive online statistical procedures are guaranteed to hold (and not just hold with high probability or on the average). This paper reviews some results in this area; the new material in it includes the proofs for the performance of the Aggregating Algorithm in the problem of linear regression with square loss. Keywords: Bayes’s rule, competitive online algorithms, linear regression, prequential statistics, worstcase analysis.
Online algorithms in machine learning
 IN FIAT, AND WOEGINGER., EDS., ONLINE ALGORITHMS: THE STATE OF THE ART
, 1998
"... The areas of OnLine Algorithms and Machine Learning are both concerned with problems of making decisions about the present based only on knowledge of the past. Although these areas differ in terms of their emphasis and the problems typically studied, there are a collection of results in Computation ..."
Abstract

Cited by 59 (2 self)
 Add to MetaCart
The areas of OnLine Algorithms and Machine Learning are both concerned with problems of making decisions about the present based only on knowledge of the past. Although these areas differ in terms of their emphasis and the problems typically studied, there are a collection of results in Computational Learning Theory that fit nicely into the "online algorithms" framework. This survey article discusses some of the results, models, and open problems from Computational Learning Theory that seem particularly interesting from the point of view of online algorithms. The emphasis in this article is on describing some of the simpler, more intuitive results, whose proofs can be given in their entirity. Pointers to the literature are given for more sophisticated versions of these algorithms.
Universal Portfolios With and Without Transaction Costs
 Machine Learning
, 1997
"... A constant rebalanced portfolio is an investment strategy which keeps the same distribution of wealth among a set of stocks from period to period. Recently there has been work on online investment strategies that are competitive with the best constant rebalanced portfolio determined in hindsight (C ..."
Abstract

Cited by 56 (3 self)
 Add to MetaCart
A constant rebalanced portfolio is an investment strategy which keeps the same distribution of wealth among a set of stocks from period to period. Recently there has been work on online investment strategies that are competitive with the best constant rebalanced portfolio determined in hindsight (Cover, 1991; Helmbold et al., 1996; Cover and Ordentlich, 1996a; Cover and Ordentlich, 1996b; Ordentlich and Cover, 1996; Cover, 1996). For the universal algorithm of Cover (Cover, 1991), we provide a simple analysis which naturally extends to the case of a fixed percentage transaction cost (commission), answering a question raised in (Cover, 1991; Helmbold et al., 1996; Cover and Ordentlich, 1996a; Cover and Ordentlich, 1996b; Ordentlich and Cover, 1996; Cover, 1996). In addition, we present a simple randomized implementation that is significantly faster in practice. We conclude by explaining how these algorithms can be applied to other problems, such as combining the predictions of statis...
Predicting a Binary Sequence Almost as Well as the Optimal Biased Coin
, 1996
"... We apply the exponential weight algorithm, introduced and Littlestone and Warmuth [17] and by Vovk [24] to the problem of predicting a binary sequence almost as well as the best biased coin. We first show that for the case of the logarithmic loss, the derived algorithm is equivalent to the Bayes alg ..."
Abstract

Cited by 41 (4 self)
 Add to MetaCart
We apply the exponential weight algorithm, introduced and Littlestone and Warmuth [17] and by Vovk [24] to the problem of predicting a binary sequence almost as well as the best biased coin. We first show that for the case of the logarithmic loss, the derived algorithm is equivalent to the Bayes algorithm with Jeffrey's prior, that was studied by Xie and Barron under probabilistic assumptions [26]. We derive a uniform bound on the regret which holds for any sequence. We also show that if the empirical distribution of the sequence is bounded away from 0 and from 1, then, as the length of the sequence increases to infinity, the difference between this bound and a corresponding bound on the average case regret of the same algorithm (which is asymptotically optimal in that case) is only 1=2. We show that this gap of 1=2 is necessary by calculating the regret of the minmax optimal algorithm for this problem and showing that the asymptotic upper bound is tight. We also study the application...