Results 1  10
of
288
The structure and function of complex networks
 SIAM REVIEW
, 2003
"... Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, ..."
Abstract

Cited by 1407 (9 self)
 Add to MetaCart
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the smallworld effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Finding community structure in networks using the eigenvectors of matrices. Phys
 Rev. E
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 224 (0 self)
 Add to MetaCart
We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of realworld complex networks. I.
Comparing community structure identification
 Journal of Statistical Mechanics: Theory and Experiment
, 2005
"... ..."
Graph evolution: Densification and shrinking diameters
 ACM TKDD
, 2007
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 120 (13 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in and outdegree distributions, communities, smallworld phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) or O(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability ” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study. We also notice that the “forest fire” model exhibits a sharp transition between sparse graphs and graphs that are densifying. Graphs with decreasing distance between the nodes are generated around this transition point. Last, we analyze the connection between the temporal evolution of the degree distribution and densification of a graph. We find that the two are fundamentally related. We also observe that real networks exhibit this type of r
Microscopic Evolution of Social Networks
, 2008
"... We present a detailed study of network evolution by analyzing four large online social networks with full temporal information about node and edge arrivals. For the first time at such a large scale, we study individual node arrival and edge creation processes that collectively lead to macroscopic pr ..."
Abstract

Cited by 103 (5 self)
 Add to MetaCart
We present a detailed study of network evolution by analyzing four large online social networks with full temporal information about node and edge arrivals. For the first time at such a large scale, we study individual node arrival and edge creation processes that collectively lead to macroscopic properties of networks. Using a methodology based on the maximumlikelihood principle, we investigate a wide variety of network formation strategies, and show that edge locality plays a critical role in evolution of networks. Our findings supplement earlier network models based on the inherently nonlocal preferential attachment. Based on our observations, we develop a complete model of network evolution, where nodes arrive at a prespecified rate and select their lifetimes. Each node then independently initiates edges according to a “gap” process, selecting a destination for each edge according to a simple triangleclosing model free of any parameters. We show analytically that the combination of the gap distribution with the node lifetime leads to a power law outdegree distribution that accurately reflects the true network in all four cases. Finally, we give model parameter settings that allow automatic evolution and generation of realistic synthetic networks of arbitrary scale.
Computing communities in large networks using random walks
 J. of Graph Alg. and App. bf
, 2004
"... Dense subgraphs of sparse graphs (communities), which appear in most realworld complex networks, play an important role in many contexts. Computing them however is generally expensive. We propose here a measure of similarities between vertices based on random walks which has several important advan ..."
Abstract

Cited by 94 (2 self)
 Add to MetaCart
Dense subgraphs of sparse graphs (communities), which appear in most realworld complex networks, play an important role in many contexts. Computing them however is generally expensive. We propose here a measure of similarities between vertices based on random walks which has several important advantages: it captures well the community structure in a network, it can be computed efficiently, and it can be used in an agglomerative algorithm to compute efficiently the community structure of a network. We propose such an algorithm, called Walktrap, which runs in time O(mn 2) and space O(n 2) in the worst case, and in time O(n 2 log n) and space O(n 2) in most realworld cases (n and m are respectively the number of vertices and edges in the input graph). Extensive comparison tests show that our algorithm surpasses previously proposed ones concerning the quality of the obtained community structures and that it stands among the best ones concerning the running time.
Characterization of complex networks: A survey of measurements
 Advances in Physics
"... Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics and function of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of mea ..."
Abstract

Cited by 89 (7 self)
 Add to MetaCart
Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics and function of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements organized into classes. Special attention is given to relating complex network analysis with the areas of pattern recognition and feature selection, as well as on surveying some concepts and measurements from traditional graph theory which are potentially useful for complex network research. Depending on the network and the analysis task one has in mind, a specific set of features may be chosen. It is hoped that the present survey will help the
Towards a theory of scalefree graphs: Definition, properties, and implications
 Internet Mathematics
, 2005
"... Abstract. There is a large, popular, and growing literature on “scalefree ” networks with the Internet along with metabolic networks representing perhaps the canonical examples. While this has in many ways reinvigorated graph theory, there is unfortunately no consistent, precise definition of scale ..."
Abstract

Cited by 83 (8 self)
 Add to MetaCart
Abstract. There is a large, popular, and growing literature on “scalefree ” networks with the Internet along with metabolic networks representing perhaps the canonical examples. While this has in many ways reinvigorated graph theory, there is unfortunately no consistent, precise definition of scalefree graphs and few rigorous proofs of many of their claimed properties. In fact, it is easily shown that the existing theory has many inherent contradictions and that the most celebrated claims regarding the Internet and biology are verifiably false. In this paper, we introduce a structural metric that allows us to differentiate between all simple, connected graphs having an identical degree sequence, which is of particular interest when that sequence satisfies a power law relationship. We demonstrate that the proposed structural metric yields considerable insight into the claimed properties of SF graphs and provides one possible measure of the extent to which a graph is scalefree. This structural view can be related to previously studied graph properties such as the various notions of selfsimilarity, likelihood, betweenness and assortativity. Our approach clarifies much of the confusion surrounding the sensational qualitative claims in the current literature, and offers a rigorous and quantitative alternative, while suggesting the potential for a rich and interesting theory. This paper is aimed at readers familiar with the basics of Internet technology and comfortable with a theoremproof style of exposition, but who may be unfamiliar with the existing literature on scalefree networks. 1.
The Internet ASLevel Topology: Three Data Sources and One Definitive Metric
"... We calculate an extensive set of characteristics for Internet AS topologies extracted from the three data sources most frequently used by the research community: traceroutes, BGP, and WHOIS. We discover that traceroute and BGP topologies are similar to one another but differ substantially from the W ..."
Abstract

Cited by 81 (15 self)
 Add to MetaCart
We calculate an extensive set of characteristics for Internet AS topologies extracted from the three data sources most frequently used by the research community: traceroutes, BGP, and WHOIS. We discover that traceroute and BGP topologies are similar to one another but differ substantially from the WHOIS topology. Among the widely considered metrics, we find that the joint degree distribution appears to fundamentally characterize Internet AS topologies as well as narrowly define values for other important metrics. We discuss the interplay between the specifics of the three data collection mechanisms and the resulting topology views. In particular, we show how the data collection peculiarities explain differences in the resulting joint degree distributions of the respective topologies. Finally, we release to the community the input topology datasets, along with the scripts and output of our calculations. This supplement should enable researchers to validate their models against real data and to make more informed selection of topology data sources for their specific needs.
Collecting the Internet ASlevel Topology
 ACM SIGCOMM Computer Communications Review (CCR
, 2005
"... At the interdomain level, the Internet topology can be represented by a graph with Autonomous Systems (ASes) as nodes and AS peerings as links. This ASlevel topology graph has been widely used in a variety of research efforts. Conventionally this topology graph is derived from routing tables colle ..."
Abstract

Cited by 81 (11 self)
 Add to MetaCart
At the interdomain level, the Internet topology can be represented by a graph with Autonomous Systems (ASes) as nodes and AS peerings as links. This ASlevel topology graph has been widely used in a variety of research efforts. Conventionally this topology graph is derived from routing tables collected by RouteViews or RIPE RIS. In this work, we assemble the most complete ASlevel topology by extending the conventional method along two dimensions. First, in addition to using data from RouteViews and RIPE RIS, we also collect data from many other sources, including route servers, looking glasses, and routing registries. Second, in addition to using routing tables, we also accumulate topological information from routing updates over time. The resulting topology graph on a recent day contains 44 % more links and 3 % more nodes than that from using RouteViews routing tables alone. Our data collection and topology generation process have been automated, and we publish the latest topology on the web on a daily basis. 1.