Results 1  10
of
317
GORDIAN: VLSI placement by quadratic programming and slicing optimization
 IEEE Trans. ComputerAided Design
, 1991
"... AbstractIn this paper we present a new placement method for cellbased layout styles. It is composed of alternating and interacting global optimization and partitioning steps that are followed by an optimization of the area utilizaiton. Methods using the divideandconquer paradigm usually lose the ..."
Abstract

Cited by 189 (5 self)
 Add to MetaCart
AbstractIn this paper we present a new placement method for cellbased layout styles. It is composed of alternating and interacting global optimization and partitioning steps that are followed by an optimization of the area utilizaiton. Methods using the divideandconquer paradigm usually lose the global view by generating smaller and smaller subproblems. In contrast, GORDIAN maintains the simultaneous treatment of all cells over all global optimization steps, thereby considering constraints that reflect the current dissection of the circuit. The global optimizations are performed by solving quadratic programming problems that possess unique global minima. Improved partitioning schemes for the stepwise refinement of the placement are introduced. The area utilization is optimized by an exhaustive slicing procedure. The placement method has been applied to real world problems and excellent results in terms of both placement quality and computation time have been obtained. I.
Statistical properties of community structure in large social and information networks
"... A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structur ..."
Abstract

Cited by 120 (10 self)
 Add to MetaCart
A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales, and we study over 70 large sparse realworld networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large realworld networks than has been appreciated previously. Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually “blend in ” with the rest of the network and thus become less “communitylike.” This behavior is not explained, even at a qualitative level, by any of the commonlyused network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are wellembeddable in a lowdimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative “forest fire” burning process, is able to produce graphs exhibiting a network community structure similar to our observations.
Geometric Mesh Partitioning: Implementation and Experiments
"... We investigate a method of dividing an irregular mesh into equalsized pieces with few interconnecting edges. The method’s novel feature is that it exploits the geometric coordinates of the mesh vertices. It is based on theoretical work of Miller, Teng, Thurston, and Vavasis, who showed that certain ..."
Abstract

Cited by 102 (19 self)
 Add to MetaCart
We investigate a method of dividing an irregular mesh into equalsized pieces with few interconnecting edges. The method’s novel feature is that it exploits the geometric coordinates of the mesh vertices. It is based on theoretical work of Miller, Teng, Thurston, and Vavasis, who showed that certain classes of “wellshaped” finite element meshes have good separators. The geometric method is quite simple to implement: we describe a Matlab code for it in some detail. The method is also quite efficient and effective: we compare it with some other methods, including spectral bisection.
Combining Simulated Annealing with Local Search Heuristics
, 1993
"... We introduce a metaheuristic to combine simulated annealing with local search methods for CO problems. This new class of Markov chains leads to significantly more powerful optimization methods than either simulated annealing or local search. The main idea is to embed deterministic local search tech ..."
Abstract

Cited by 81 (7 self)
 Add to MetaCart
We introduce a metaheuristic to combine simulated annealing with local search methods for CO problems. This new class of Markov chains leads to significantly more powerful optimization methods than either simulated annealing or local search. The main idea is to embed deterministic local search techniques into simulated annealing so that the chain explores only local optima. It makes large, global changes, even at low temperatures, thus overcoming large barriers in configuration space. We have tested this metaheuristic for the traveling salesman and graph partitioning problems. Tests on instances from public libraries and random ensembles quantify the power of the method. Our algorithm is able to solve large instances to optimality, improving upon state of the art local search methods very significantly. For the traveling salesman problem with randomly distributed cities in a square, the procedure improves on 3opt by 1.6%, and on LinKernighan local search by 1.3%. For the partitioni...
Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract

Cited by 79 (6 self)
 Add to MetaCart
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large realworld networks, ranging from traditional and online social networks, to technological and information networks and
VLSI cell placement techniques
 ACM Computing Surveys
, 1991
"... VLSI cell placement problem is known to be NP complete. A wide repertoire of heuristic algorithms exists in the literature for efficiently arranging the logic cells on a VLSI chip. The objective of this paper is to present a comprehensive survey of the various cell placement techniques, with emphasi ..."
Abstract

Cited by 75 (0 self)
 Add to MetaCart
VLSI cell placement problem is known to be NP complete. A wide repertoire of heuristic algorithms exists in the literature for efficiently arranging the logic cells on a VLSI chip. The objective of this paper is to present a comprehensive survey of the various cell placement techniques, with emphasis on standard ce11and macro
A TwoDimensional Data Distribution Method For Parallel Sparse MatrixVector Multiplication
 SIAM REVIEW
"... A new method is presented for distributing data in sparse matrixvector multiplication. The method is twodimensional, tries to minimise the true communication volume, and also tries to spread the computation and communication work evenly over the processors. The method starts with a recursive bipar ..."
Abstract

Cited by 68 (9 self)
 Add to MetaCart
A new method is presented for distributing data in sparse matrixvector multiplication. The method is twodimensional, tries to minimise the true communication volume, and also tries to spread the computation and communication work evenly over the processors. The method starts with a recursive bipartitioning of the sparse matrix, each time splitting a rectangular matrix into two parts with a nearly equal number of nonzeros. The communication volume caused by the split is minimised. After the matrix partitioning, the input and output vectors are partitioned with the objective of minimising the maximum communication volume per processor. Experimental results of our implementation, Mondriaan, for a set of sparse test matrices show a reduction in communication compared to onedimensional methods, and in general a good balance in the communication work.
Fastplace: Efficient analytical placement using cell shifting, iterative local refinement and a hybrid net model
, 2004
"... Abstract — In this paper, we present FastPlace – a fast, iterative, flat placement algorithm for largescale standard cell designs. FastPlace is based on the quadratic placement approach. The quadratic approach formulates the wirelength minimization problem as a convex quadratic program that can be ..."
Abstract

Cited by 61 (8 self)
 Add to MetaCart
Abstract — In this paper, we present FastPlace – a fast, iterative, flat placement algorithm for largescale standard cell designs. FastPlace is based on the quadratic placement approach. The quadratic approach formulates the wirelength minimization problem as a convex quadratic program that can be solved efficiently by some analytical techniques. However it suffers from some drawbacks. First, the resulting placement has a lot of overlap among cells. Second, the resulting total wirelength may be long as the quadratic wirelength objective is only an indirect measure of the linear wirelength. Third, existing net models tend to create a lot of nonzero entries in the connectivity matrix that slows down the quadratic program solver. To handle the above problems we propose: (1) An efficient Cell Shifting technique to remove cell overlap from the quadratic program solution and also accelerate the convergence of the solver. This technique produces a global placement with even cell distribution in a very short time. (2) An Iterative Local Refinement technique to reduce the wirelength according to the halfperimeter measure. (3) A Hybrid Net Model that is a combination of the traditional clique and star models. This net model greatly reduces the number of nonzero entries in the connectivity matrix and results in a significant speedup of the solver. Experimental results show that FastPlace is on average 13.4, 102
HypergraphPartitioning Based Decomposition for Parallel SparseMatrix Vector Multiplication
 IEEE Trans. on Parallel and Distributed Computing
"... In this work, we show that the standard graphpartitioning based decomposition of sparse matrices does not reflect the actual communication volume requirement for parallel matrixvector multiplication. We propose two computational hypergraph models which avoid this crucial deficiency of the graph mo ..."
Abstract

Cited by 61 (34 self)
 Add to MetaCart
In this work, we show that the standard graphpartitioning based decomposition of sparse matrices does not reflect the actual communication volume requirement for parallel matrixvector multiplication. We propose two computational hypergraph models which avoid this crucial deficiency of the graph model. The proposed models reduce the decomposition problem to the wellknown hypergraph partitioning problem. The recently proposed successful multilevel framework is exploited to develop a multilevel hypergraph partitioning tool PaToH for the experimental verification of our proposed hypergraph models. Experimental results on a wide range of realistic sparse test matrices confirm the validity of the proposed hypergraph models. In the decomposition of the test matrices, the hypergraph models using PaToH and hMeTiS result in up to 63% less communication volume (30%38% less on the average) than the graph model using MeTiS, while PaToH is only 1.32.3 times slower than MeTiS on the average. ...
A Parallel Bottomup Clustering Algorithm with Applications to Circuit Partitioning in VLSI Design
 In Proc. ACM/IEEE Design Automation Conference
, 1993
"... In this paper, we present a bottomup clustering algorithm based on recursive collapsing of small cliques in a graph. The sizes of the small cliques are derived using random graph theory. This clustering algorithm leads to a natural parallel implementation in which multiple processors are used to id ..."
Abstract

Cited by 60 (10 self)
 Add to MetaCart
In this paper, we present a bottomup clustering algorithm based on recursive collapsing of small cliques in a graph. The sizes of the small cliques are derived using random graph theory. This clustering algorithm leads to a natural parallel implementation in which multiple processors are used to identify clusters simultaneously. We also present a clusterbased partitioning method in which our clustering algorithm is used as a preprocessing step to both the bisection algorithm by Fiduccia and Mattheyses and a ratiocut algorithm by Wei and Cheng. Our results show that clusterbased partitioning obtains cut sizes up to 49.6% smaller than the bisection algorithm, and obtains ratio cut sizes up to 66.8% smaller than the ratiocut algorithm. Moreover, we show that clusterbased partitioning produces much stabler results than direct partitioning.