Results 1  10
of
221
Online Learning with Kernels
, 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little u ..."
Abstract

Cited by 2596 (125 self)
 Add to MetaCart
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little use of these methods in an online setting suitable for realtime applications. In this paper we consider online learning in a Reproducing Kernel Hilbert Space. By considering classical stochastic gradient descent within a feature space, and the use of some straightforward tricks, we develop simple and computationally efficient algorithms for a wide range of problems such as classification, regression, and novelty detection. In addition to allowing the exploitation of the kernel trick in an online setting, we examine the value of large margins for classification in the online setting with a drifting target. We derive worst case loss bounds and moreover we show the convergence of the hypothesis to the minimiser of the regularised risk functional. We present some experimental results that support the theory as well as illustrating the power of the new algorithms for online novelty detection. In addition
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 811 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer basis functions than a comparable SVM while oering a number of additional advantages. These include the benets of probabilistic predictions, automatic estimation of `nuisance' parameters, and the facility to utilise arbitrary basis functions (e.g. non`Mercer' kernels).
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 723 (3 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 525 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work. Supervised learning in the form of regression (for continuous outputs) and classification (for discrete outputs) is an important constituent of statistics and machine learning, either for analysis of data sets, or as a subgoal of a more complex problem. Traditionally parametric 1 models have been used for this purpose. These have a possible advantage in ease of interpretability, but for complex data sets, simple parametric models may lack expressive power, and their more complex counterparts (such as feed forward neural networks) may not be easy to work with
Kernels and Regularization on Graphs
, 2003
"... We introduce a family of kernels on graphs based on the notion of regularization operators. This generalizes in a natural way the notion of regularization and Greens functions, as commonly used for real valued functions, to graphs. It turns out that di#usion kernels can be found as a special cas ..."
Abstract

Cited by 225 (11 self)
 Add to MetaCart
(Show Context)
We introduce a family of kernels on graphs based on the notion of regularization operators. This generalizes in a natural way the notion of regularization and Greens functions, as commonly used for real valued functions, to graphs. It turns out that di#usion kernels can be found as a special case of our reasoning. We show that the class of positive, monotonically decreasing functions on the unit interval leads to kernels and corresponding regularization operators.
Probabilistic nonlinear principal component analysis with Gaussian process latent variable models
 Journal of Machine Learning Research
, 2005
"... Summarising a high dimensional data set with a low dimensional embedding is a standard approach for exploring its structure. In this paper we provide an overview of some existing techniques for discovering such embeddings. We then introduce a novel probabilistic interpretation of principal component ..."
Abstract

Cited by 202 (22 self)
 Add to MetaCart
(Show Context)
Summarising a high dimensional data set with a low dimensional embedding is a standard approach for exploring its structure. In this paper we provide an overview of some existing techniques for discovering such embeddings. We then introduce a novel probabilistic interpretation of principal component analysis (PCA) that we term dual probabilistic PCA (DPPCA). The DPPCA model has the additional advantage that the linear mappings from the embedded space can easily be nonlinearised through Gaussian processes. We refer to this model as a Gaussian process latent variable model (GPLVM). Through analysis of the GPLVM objective function, we relate the model to popular spectral techniques such as kernel PCA and multidimensional scaling. We then review a practical algorithm for GPLVMs in the context of large data sets and develop it to also handle discrete valued data and missing attributes. We demonstrate the model on a range of realworld and artificially generated data sets.
A Generalized Representer Theorem
 In Proceedings of the Annual Conference on Computational Learning Theory
, 2001
"... Wahba's classical representer theorem states that the solutions of certain risk minimization problems involving an empirical risk term and a quadratic regularizer can be written as expansions in terms of the training examples. We generalize the theorem to a larger class of regularizers and ..."
Abstract

Cited by 201 (17 self)
 Add to MetaCart
(Show Context)
Wahba's classical representer theorem states that the solutions of certain risk minimization problems involving an empirical risk term and a quadratic regularizer can be written as expansions in terms of the training examples. We generalize the theorem to a larger class of regularizers and empirical risk terms, and give a selfcontained proof utilizing the feature space associated with a kernel. The result shows that a wide range of problems have optimal solutions that live in the finite dimensional span of the training examples mapped into feature space, thus enabling us to carry out kernel algorithms independent of the (potentially infinite) dimensionality of the feature space.
Learning with Labeled and Unlabeled Data
, 2001
"... In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as we ..."
Abstract

Cited by 187 (3 self)
 Add to MetaCart
(Show Context)
In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as well as numerous suggestions for potential future work. Therefore, this work contains more speculative and partly subjective material than the reader might expect from a literature review. We give a rigorous definition of the problem and relate it to supervised and unsupervised learning. The crucial role of prior knowledge is put forward, and we discuss the important notion of inputdependent regularization. We postulate a number of baseline methods, being algorithms or algorithmic schemes which can more or less straightforwardly be applied to the problem, without the need for genuinely new concepts. However, some of them might serve as basis for a genuine method. In the literature revi...
Kernel partial least squares regression in reproducing kernel hilbert space
 Journal of Machine Learning Research
, 2001
"... A family of regularized least squares regression models in a Reproducing Kernel Hilbert Space is extended by the kernel partial least squares (PLS) regression model. Similar to principal components regression (PCR), PLS is a method based on the projection of input (explanatory) variables to the late ..."
Abstract

Cited by 135 (10 self)
 Add to MetaCart
(Show Context)
A family of regularized least squares regression models in a Reproducing Kernel Hilbert Space is extended by the kernel partial least squares (PLS) regression model. Similar to principal components regression (PCR), PLS is a method based on the projection of input (explanatory) variables to the latent variables (components). However, in contrast to PCR, PLS creates the components by modeling the relationship between input and output variables while maintaining most of the information in the input variables. PLS is useful in situations where the number of explanatory variables exceeds the number of observations and/or a high level of multicollinearity among those variables is assumed. Motivated by this fact we will provide a kernel PLS algorithm for construction of nonlinear regression models in possibly highdimensional feature spaces. We give the theoretical description of the kernel PLS algorithm and we experimentally compare the algorithm with the existing kernel PCR and kernel ridge regression techniques. We will demonstrate that on the data sets employed kernel PLS achieves the same results as kernel PCR but uses significantly fewer, qualitatively different components. 1.
The Kernel Recursive Least Squares Algorithm
 IEEE Transactions on Signal Processing
, 2003
"... We present a nonlinear kernelbased version of the Recursive Least Squares (RLS) algorithm. Our KernelRLS (KRLS) algorithm performs linear regression in the feature space induced by a Mercer kernel, and can therefore be used to recursively construct the minimum mean squared error regressor. Spars ..."
Abstract

Cited by 126 (2 self)
 Add to MetaCart
(Show Context)
We present a nonlinear kernelbased version of the Recursive Least Squares (RLS) algorithm. Our KernelRLS (KRLS) algorithm performs linear regression in the feature space induced by a Mercer kernel, and can therefore be used to recursively construct the minimum mean squared error regressor. Sparsity of the solution is achieved by a sequential sparsification process that admits into the kernel representation a new input sample only if its feature space image cannot be suffciently well approximated by combining the images of previously admitted samples. This sparsification procedure is crucial to the operation of KRLS, as it allows it to operate online, and by effectively regularizing its solutions. A theoretical analysis of the sparsification method reveals its close affinity to kernel PCA, and a datadependent loss bound is presented, quantifying the generalization performance of the KRLS algorithm. We demonstrate the performance and scaling properties of KRLS and compare it to a stateof theart Support Vector Regression algorithm, using both synthetic and real data. We additionally test KRLS on two signal processing problems in which the use of traditional leastsquares methods is commonplace: Time series prediction and channel equalization.