Results 1  10
of
109
Geometric Range Searching and Its Relatives
 CONTEMPORARY MATHEMATICS
"... ... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems. ..."
Abstract

Cited by 256 (40 self)
 Add to MetaCart
... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems.
Succinct indexable dictionaries with applications to encoding kary trees and multisets
 In Proceedings of the 13th Annual ACMSIAM Symposium on Discrete Algorithms (SODA
"... We consider the indexable dictionary problem, which consists of storing a set S ⊆ {0,...,m − 1} for some integer m, while supporting the operations of rank(x), which returns the number of elements in S that are less than x if x ∈ S, and −1 otherwise; and select(i) which returns the ith smallest ele ..."
Abstract

Cited by 191 (7 self)
 Add to MetaCart
We consider the indexable dictionary problem, which consists of storing a set S ⊆ {0,...,m − 1} for some integer m, while supporting the operations of rank(x), which returns the number of elements in S that are less than x if x ∈ S, and −1 otherwise; and select(i) which returns the ith smallest element in S. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+ o(n)+O(lg lg m) bits to store a set of size n, where B(n,m) = ⌈ lg ( m) ⌉ n is the minimum number of bits required to store any nelement subset from a universe of size m. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lg lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: • an informationtheoretically optimal representation of a kary cardinal tree that supports standard operations in constant time, • a representation of a multiset of size n from {0,...,m − 1} in B(n,m+n) + o(n) bits that supports (appropriate generalizations of) rank and select operations in constant time, and • a representation of a sequence of n nonnegative integers summing up to m in B(n,m + n) + o(n) bits that supports prefix sum queries in constant time. 1
Cacheoblivious Btrees
, 2000
"... Abstract. This paper presents two dynamic search trees attaining nearoptimal performance on any hierarchical memory. The data structures are independent of the parameters of the memory hierarchy, e.g., the number of memory levels, the blocktransfer size at each level, and the relative speeds of me ..."
Abstract

Cited by 135 (22 self)
 Add to MetaCart
Abstract. This paper presents two dynamic search trees attaining nearoptimal performance on any hierarchical memory. The data structures are independent of the parameters of the memory hierarchy, e.g., the number of memory levels, the blocktransfer size at each level, and the relative speeds of memory levels. The performance is analyzed in terms of the number of memory transfers between two memory levels with an arbitrary blocktransfer size of B; this analysis can then be applied to every adjacent pair of levels in a multilevel memory hierarchy. Both search trees match the optimal search bound of Θ(1+logB+1 N) memory transfers. This bound is also achieved by the classic Btree data structure on a twolevel memory hierarchy with a known blocktransfer size B. The first search tree supports insertions and deletions in Θ(1 + logB+1 N) amortized memory transfers, which matches the Btree’s worstcase bounds. The second search tree supports scanning S consecutive elements optimally in Θ(1 + S/B) memory transfers and supports insertions and deletions in Θ(1 + logB+1 N + log2 N) amortized memory transfers, matching the performance of the Btree for B = B Ω(log N log log N).
On RAM priority queues
, 1996
"... Priority queues are some of the most fundamental data structures. They are used directly for, say, task scheduling in operating systems. Moreover, they are essential to greedy algorithms. We study the complexity of priority queue operations on a RAM with arbitrary word size. We present exponential i ..."
Abstract

Cited by 70 (9 self)
 Add to MetaCart
Priority queues are some of the most fundamental data structures. They are used directly for, say, task scheduling in operating systems. Moreover, they are essential to greedy algorithms. We study the complexity of priority queue operations on a RAM with arbitrary word size. We present exponential improvements over previous bounds, and we show tight relations to sorting. Our first result is a RAM priority queue supporting insert and extractmin operations in worst case time O(log log n) where n is the current number of keys in the queue. This is an exponential improvement over the O( p log n) bound of Fredman and Willard from STOC'90. Our algorithm is simple, and it only uses AC 0 operations, meaning that there is no hidden time dependency on the word size. Plugging this priority queue into Dijkstra's algorithm gives an O(m log log m) algorithm for the single source shortest path problem on a graph with m edges, as compared with the previous O(m p log m) bound based on Fredman...
Optimal Bounds for the Predecessor Problem
 In Proceedings of the ThirtyFirst Annual ACM Symposium on Theory of Computing
"... We obtain matching upper and lower bounds for the amount of time to find the predecessor of a given element among the elements of a fixed efficiently stored set. Our algorithms are for the unitcost wordlevel RAM with multiplication and extend to give optimal dynamic algorithms. The lower bounds ar ..."
Abstract

Cited by 63 (0 self)
 Add to MetaCart
We obtain matching upper and lower bounds for the amount of time to find the predecessor of a given element among the elements of a fixed efficiently stored set. Our algorithms are for the unitcost wordlevel RAM with multiplication and extend to give optimal dynamic algorithms. The lower bounds are proved in a much stronger communication game model, but they apply to the cell probe and RAM models and to both static and dynamic predecessor problems.
Marked Ancestor Problems
, 1998
"... Consider a rooted tree whose nodes can be marked or unmarked. Given a node, we want to find its nearest marked ancestor. This generalises the wellknown predecessor problem, where the tree is a path. ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
Consider a rooted tree whose nodes can be marked or unmarked. Given a node, we want to find its nearest marked ancestor. This generalises the wellknown predecessor problem, where the tree is a path.
Undirected Single Source Shortest Paths in Linear Time
 J. Assoc. Comput. Mach
, 1997
"... The single source shortest paths problem (SSSP) is one of the classic problems in algorithmic graph theory: given a weighted graph G with a source vertex s, find the shortest path from s to all other vertices in the graph. Since 1959 all theoretical developments in SSSP have been based on Dijkstra' ..."
Abstract

Cited by 49 (3 self)
 Add to MetaCart
The single source shortest paths problem (SSSP) is one of the classic problems in algorithmic graph theory: given a weighted graph G with a source vertex s, find the shortest path from s to all other vertices in the graph. Since 1959 all theoretical developments in SSSP have been based on Dijkstra's algorithm, visiting the vertices in order of increasing distance from s. Thus, any implementation of Dijkstra 's algorithm sorts the vertices according to their distances from s. However, we do not know how to sort in linear time. Here, a deterministic linear time and linear space algorithm is presented for the undirected single source shortest paths problem with integer weights. The algorithm avoids the sorting bottleneck by building a hierechical bucketing structure, identifying vertex pairs that may be visited in any order. 1 Introduction Let G = (V; E), jV j = n, jEj = m, be an undirected connected graph with an integer edge weight function ` : E ! N and a distinguished source vertex...
Tight(er) Worstcase Bounds on Dynamic Searching and Priority Queues
 In STOC’2000
, 2000
"... We introduce a novel technique for converting static polynomial space search structures for ordered sets into fullydynamic linear space data structures. Based on this we present optimal bounds for dynamic integer searching, including finger search, and exponentially improved bounds for priority queu ..."
Abstract

Cited by 43 (2 self)
 Add to MetaCart
We introduce a novel technique for converting static polynomial space search structures for ordered sets into fullydynamic linear space data structures. Based on this we present optimal bounds for dynamic integer searching, including finger search, and exponentially improved bounds for priority queues.
Improved Parallel Integer Sorting without Concurrent Writing
, 1992
"... We show that n integers in the range 1 : : n can be sorted stably on an EREW PRAM using O(t) time and O(n( p log n log log n + (log n) 2 =t)) operations, for arbitrary given t log n log log n, and on a CREW PRAM using O(t) time and O(n( p log n + log n=2 t=logn )) operations, for arbitrary ..."
Abstract

Cited by 41 (4 self)
 Add to MetaCart
We show that n integers in the range 1 : : n can be sorted stably on an EREW PRAM using O(t) time and O(n( p log n log log n + (log n) 2 =t)) operations, for arbitrary given t log n log log n, and on a CREW PRAM using O(t) time and O(n( p log n + log n=2 t=logn )) operations, for arbitrary given t log n. In addition, we are able to sort n arbitrary integers on a randomized CREW PRAM within the same resource bounds with high probability. In each case our algorithm is a factor of almost \Theta( p log n) closer to optimality than all previous algorithms for the stated problem in the stated model, and our third result matches the operation count of the best previous sequential algorithm. We also show that n integers in the range 1 : : m can be sorted in O((log n) 2 ) time with O(n) operations on an EREW PRAM using a nonstandard word length of O(log n log log n log m) bits, thereby greatly improving the upper bound on the word length necessary to sort integers with a linear t...