Results 1  10
of
149
COMBINING GEOMETRY AND COMBINATORICS: A UNIFIED APPROACH TO SPARSE SIGNAL RECOVERY
"... Abstract. There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constru ..."
Abstract

Cited by 80 (12 self)
 Add to MetaCart
Abstract. There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constructs Φ and a combinatorial decoding algorithm to match. We present a unified approach to these two classes of sparse signal recovery algorithms. The unifying elements are the adjacency matrices of highquality unbalanced expanders. We generalize the notion of Restricted Isometry Property (RIP), crucial to compressed sensing results for signal recovery, from the Euclidean norm to the ℓp norm for p ≈ 1, and then show that unbalanced expanders are essentially equivalent to RIPp matrices. From known deterministic constructions for such matrices, we obtain new deterministic measurement matrix constructions and algorithms for signal recovery which, compared to previous deterministic algorithms, are superior in either the number of measurements or in noise tolerance. 1.
Sensing by Random Convolution
 IEEE Int. Work. on Comp. Adv. MultiSensor Adaptive Proc., CAMPSAP
, 2007
"... Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in a ..."
Abstract

Cited by 66 (4 self)
 Add to MetaCart
Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in any fixed representation can be recovered from m � S log n measurements. We discuss two imaging scenarios — radar and Fourier optics — where convolution with a random pulse allows us to seemingly superresolve finescale features, allowing us to recover highresolution signals from lowresolution measurements. 1. Introduction. The new field of compressive sensing (CS) has given us a fresh look at data acquisition, one of the fundamental tasks in signal processing. The message of this theory can be summarized succinctly [7, 8, 10, 15, 32]: the number of measurements we need to reconstruct a signal depends on its sparsity rather than its bandwidth. These measurements, however, are different than the samples that
Signal Processing with Compressive Measurements
, 2009
"... The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been sh ..."
Abstract

Cited by 46 (19 self)
 Add to MetaCart
The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been shown that random projections are a nearoptimal measurement scheme. This has inspired the design of hardware systems that directly implement random measurement protocols. However, despite the intense focus of the community on signal recovery, many (if not most) signal processing problems do not require full signal recovery. In this paper, we take some first steps in the direction of solving inference problems—such as detection, classification, or estimation—and filtering problems using only compressive measurements and without ever reconstructing the signals involved. We provide theoretical bounds along with experimental results.
Sparse recovery using sparse random matrices
, 2008
"... We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a highdimensional vector x from its lowerdimensional sketch Ax. A popular way of performing this recovery is by finding x # such that Ax = Ax # , and �x # �1 is minimal. It is known that this approach ..."
Abstract

Cited by 43 (4 self)
 Add to MetaCart
We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a highdimensional vector x from its lowerdimensional sketch Ax. A popular way of performing this recovery is by finding x # such that Ax = Ax # , and �x # �1 is minimal. It is known that this approach “works” if A is a random dense matrix, chosen from a proper distribution. In this paper, we investigate this procedure for the case where A is binary and very sparse. We show that, both in theory and in practice, sparse matrices are essentially as “good” as the dense ones. At the same time, sparse binary matrices provide additional benefits, such as reduced encoding and decoding time.
NonParametric Bayesian Dictionary Learning for Sparse Image Representations
"... Nonparametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this nonparametric method naturally infers ..."
Abstract

Cited by 38 (23 self)
 Add to MetaCart
Nonparametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this nonparametric method naturally infers an appropriate dictionary size. The Dirichlet process and a probit stickbreaking process are also considered to exploit structure within an image. The proposed method can learn a sparse dictionary in situ; training images may be exploited if available, but they are not required. Further, the noise variance need not be known, and can be nonstationary. Another virtue of the proposed method is that sequential inference can be readily employed, thereby allowing scaling to large images. Several example results are presented, using both Gibbs and variational Bayesian inference, with comparisons to other stateoftheart approaches.
A Probabilistic and RIPless Theory of Compressed Sensing
, 2010
"... This paper introduces a simple and very general theory of compressive sensing. In this theory, the sensing mechanism simply selects sensing vectors independently at random from a probability distribution F; it includes all models — e.g. Gaussian, frequency measurements — discussed in the literature, ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
This paper introduces a simple and very general theory of compressive sensing. In this theory, the sensing mechanism simply selects sensing vectors independently at random from a probability distribution F; it includes all models — e.g. Gaussian, frequency measurements — discussed in the literature, but also provides a framework for new measurement strategies as well. We prove that if the probability distribution F obeys a simple incoherence property and an isotropy property, one can faithfully recover approximately sparse signals from a minimal number of noisy measurements. The novelty is that our recovery results do not require the restricted isometry property (RIP) — they make use of a much weaker notion — or a random model for the signal. As an example, the paper shows that a signal with s nonzero entries can be faithfully recovered from about s log n Fourier coefficients that are contaminated with noise.
Lower Bounds for Sparse Recovery
"... We consider the following ksparse recovery problem: design an m × n matrix A, such that for any signal x, given Ax we can efficiently recover ˆx satisfying ..."
Abstract

Cited by 33 (16 self)
 Add to MetaCart
We consider the following ksparse recovery problem: design an m × n matrix A, such that for any signal x, given Ax we can efficiently recover ˆx satisfying
1 Sparse Recovery Using Sparse Matrices
"... Abstract—We survey algorithms for sparse recovery problems that are based on sparse random matrices. Such matrices has several attractive properties: they support algorithms with low computational complexity, and make it easy to perform incremental updates to signals. We discuss applications to seve ..."
Abstract

Cited by 32 (7 self)
 Add to MetaCart
Abstract—We survey algorithms for sparse recovery problems that are based on sparse random matrices. Such matrices has several attractive properties: they support algorithms with low computational complexity, and make it easy to perform incremental updates to signals. We discuss applications to several areas, including compressive sensing, data stream computing and group testing. I.
Robust 1Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors
, 2011
"... The Compressive Sensing (CS) framework aims to ease the burden on analogtodigital converters (ADCs) by reducing the sampling rate required to acquire and stably recover sparse signals. Practical ADCs not only sample but also quantize each measurement to a finite number of bits; moreover, there is ..."
Abstract

Cited by 29 (13 self)
 Add to MetaCart
The Compressive Sensing (CS) framework aims to ease the burden on analogtodigital converters (ADCs) by reducing the sampling rate required to acquire and stably recover sparse signals. Practical ADCs not only sample but also quantize each measurement to a finite number of bits; moreover, there is an inverse relationship between the achievable sampling rate and the bit depth. In this paper, we investigate an alternative CS approach that shifts the emphasis from the sampling rate to the number of bits per measurement. In particular, we explore the extreme case of 1bit CS measurements, which capture just their sign. Our results come in two flavors. First, we consider ideal reconstruction from noiseless 1bit measurements and provide a lower bound on the best achievable reconstruction error. We also demonstrate that a large class of measurement mappings achieve this optimal bound. Second, we consider reconstruction robustness to measurement errors and noise and introduce the Binary ɛStable Embedding (BɛSE) property, which characterizes the robustness measurement process to sign changes. We show the same class of matrices that provide optimal noiseless performance also enable such a robust mapping. On the practical side, we introduce the Binary Iterative Hard Thresholding (BIHT) algorithm for signal reconstruction from 1bit measurements that offers stateoftheart performance.
Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization
, 2008
"... Abstract Sparse signals representation, analysis, and sensing, has received a lot of attention in recent years from the signal processing, optimization, and learning communities. On one hand, the learning of overcomplete dictionaries that facilitate a sparse representation of the image as a liner c ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
Abstract Sparse signals representation, analysis, and sensing, has received a lot of attention in recent years from the signal processing, optimization, and learning communities. On one hand, the learning of overcomplete dictionaries that facilitate a sparse representation of the image as a liner combination of a few atoms from such dictionary, leads to stateoftheart results in image and video restoration and image classification. On the other hand, the framework of compressed sensing (CS) has shown that sparse signals can be recovered from far less samples than those required by the classical ShannonNyquist Theorem. The goal of this paper is to present a framework that unifies the learning of overcomplete dictionaries for sparse image representation with the concepts of signal recovery from very few samples put forward by the CS theory. The samples used in CS correspond to linear projections defined by a sampling projection matrix. It has been shown that, for example, a nonadaptive random sampling matrix satisfies the fundamental theoretical requirements of CS, enjoying the additional benefit of universality. On the other hand, a projection sensing matrix that is optimally designed for a certain signal class can further improve the reconstruction accuracy or further reduce the necessary number of samples. In this work we introduce a framework for the joint design and optimization, from a set of training images, of the