Results 11  20
of
33
Cubical Sets And Their Site
 Theory Appl. Categ
, 2003
"... Extended cubical sets (with connections and interchanges) are presheaves on a ground category, the extended cubical site K, corresponding to the (augmented) simplicial site, the category of finite ordinals. We prove here that K has characterisations similar to the classical ones for the simplicia ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
Extended cubical sets (with connections and interchanges) are presheaves on a ground category, the extended cubical site K, corresponding to the (augmented) simplicial site, the category of finite ordinals. We prove here that K has characterisations similar to the classical ones for the simplicial analogue, by generators and relations, or by the existence of a universal symmetric cubical monoid ; in fact, K is the classifying category of a monoidal algebraic theory of such monoids. Analogous results are given for the restricted cubical site I of ordinary cubical sets (just faces and degeneracies) and for the intermediate site J (including connections). We also consider briefly the reversible analogue, !K.
A Functorial Semantics for MultiAlgebras and Partial Algebras, With Applications to Syntax
, 2000
"... Multialgebras allow for the modeling of nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. We propose a functorial presentation of various categories of multialgebras and partial algebras, analogous to the classica ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
Multialgebras allow for the modeling of nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. We propose a functorial presentation of various categories of multialgebras and partial algebras, analogous to the classical presentation of algebras over a signature as cartesian functors from the algebraic theory over to Set. We introduce two dierent notions of theory over a signature, both having a structure weaker than cartesian, and we consider functors from them to Rel or Pfn, the categories of sets and relations or partial functions, respectively. Next we discuss how the functorial presentation provides guidelines for the choice of syntactical notions for a class of algebras, and as an application we argue that the natural generalization of usual terms are \conditioned terms" for partial algebras, and \term graphs" for multialgebras. Contents 1 Introduction 2 2 A short recap on multialgebras 4 3...
Executable Tile Specifications for Process Calculi
, 1999
"... . Tile logic extends rewriting logic by taking into account sideeffects and rewriting synchronization. These aspects are very important when we model process calculi, because they allow us to express the dynamic interaction between processes and "the rest of the world". Since rewriting logic is the ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
. Tile logic extends rewriting logic by taking into account sideeffects and rewriting synchronization. These aspects are very important when we model process calculi, because they allow us to express the dynamic interaction between processes and "the rest of the world". Since rewriting logic is the semantic basis of several language implementation efforts, an executable specification of tile systems can be obtained by mapping tile logic back into rewriting logic, in a conservative way. However, a correct rewriting implementation of tile logic requires the development of a metalayer to control rewritings, i.e., to discard computations that do not correspond to any deduction in tile logic. We show how such methodology can be applied to term tile systems that cover and extend a wideclass of SOS formats for the specification of process calculi. The wellknown casestudy of full CCS, where the term tile format is needed to deal with recursion (in the form of the replicator operator), is di...
The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads
, 2007
"... Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained precedence. A generation later, the definition of monad began to appear extensively in theoretical computer science in order to model computational effects, without reference to universal algebra. But since then, the relevance of universal algebra to computational effects has been recognised, leading to renewed prominence of the notion of Lawvere theory, now in a computational setting. This development has formed a major part of Gordon Plotkin’s mature work, and we study its history here, in particular asking why Lawvere theories were eclipsed by monads in the 1960’s, and how the renewed interest in them in a computer science setting might develop in future.
The microcosm principle and concurrency in coalgebras
 I. HASUO, B. JACOBS, AND A. SOKOLOVA
, 2008
"... Coalgebras are categorical presentations of statebased systems. In investigating parallel composition of coalgebras (realizing concurrency), we observe that the same algebraic theory is interpreted in two different domains in a nested manner, namely: in the category of coalgebras, and in the final ..."
Abstract

Cited by 11 (8 self)
 Add to MetaCart
Coalgebras are categorical presentations of statebased systems. In investigating parallel composition of coalgebras (realizing concurrency), we observe that the same algebraic theory is interpreted in two different domains in a nested manner, namely: in the category of coalgebras, and in the final coalgebra as an object in it. This phenomenon is what Baez and Dolan have called the microcosm principle, a prototypical example of which is “a monoid in a monoidal category.” In this paper we obtain a formalization of the microcosm principle in which such a nested model is expressed categorically as a suitable lax natural transformation. An application of this account is a general compositionality result which supports modular verification of complex systems.
Quantum logic in dagger kernel categories
 Order
"... This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial inject ..."
Abstract

Cited by 9 (9 self)
 Add to MetaCart
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical/ordertheoretic properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, orthomodularity, atomicity and completeness. For instance, the Sasaki hook and andthen connectives are obtained, as adjoints, via the existentialpullback adjunction between fibres. 1
On the Role of Category Theory in the Area of Algebraic Specifications
 In LNCS , Proc. WADT11
, 1996
"... . The paper summarizes the main concepts and paradigms of category theory and explores some of their applications to the area of algebraic specifications. In detail we discuss different approaches to an abstract theory of specification logics. Further we present a uniform framework for developing pa ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
. The paper summarizes the main concepts and paradigms of category theory and explores some of their applications to the area of algebraic specifications. In detail we discuss different approaches to an abstract theory of specification logics. Further we present a uniform framework for developing particular specification logics. We make use of `classifying categories', to present categories of algebras as functor categories and to obtain necessary basic results for particular specification logics in a uniform manner. The specification logics considered are: equational logic for total algebras, conditional equational logic for partial algebras, and rewrite logic for concurrent systems. 1 Category Theory and Applications in Computer Science Category theory has been developed as a mathematical theory over 50 years and has influenced not only almost all branches of structural mathematics but also the development of several areas of computer science. It is the aim of this paper to review t...
Graphbased logic and sketches I: The general framework. Available by web browser from http://www.cwru.edu/1/class/mans/math/pub/wells
, 1996
"... Sketches as a method of specification of mathematical structures are an alternative to the stringbased specification employed in mathematical logic. ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
Sketches as a method of specification of mathematical structures are an alternative to the stringbased specification employed in mathematical logic.
Functorial Semantics for Multialgebras
 Recent Trends in Algebraic Development Techniques, volume 1589 of LNCS
, 1998
"... . Multialgebras allow to model nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. We propose a functorial presentation of various categories of multialgebras and partial algebras, analogous to the classical pre ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
. Multialgebras allow to model nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. We propose a functorial presentation of various categories of multialgebras and partial algebras, analogous to the classical presentation of algebras over a signature \Sigma as cartesian functors from the algebraic theory of \Sigma , Th(\Sigma), to Set. The functors we introduce are based on variations of the notion of theory, having a structure weaker than cartesian, and their target is Rel, the category of sets and relations. We argue that this functorial presentation provides an original abstract syntax for partial and multialgebras. 1 Introduction Nondeterminism is a fundamental concept in Computer Science. It arises not only from the study of intrinsically nondeterministic computational models, like Turing machines and various kinds of automata, but also in the study of the behaviour of deterministic sys...