Results 1  10
of
107
Shiftable Multiscale Transforms
, 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract

Cited by 429 (38 self)
 Add to MetaCart
Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavelet transforms are also unstable with respect to dilations of the input signal, and in two dimensions, rotations of the input signal. We formalize these problems by defining a type of translation invariance that we call "shiftability". In the spatial domain, shiftability corresponds to a lack of aliasing; thus, the conditions under which the property holds are specified by the sampling theorem. Shiftability may also be considered in the context of other domains, particularly orientation and scale. We explore "jointly shiftable" transforms that are simultaneously shiftable in more than one domain. Two examples of jointly shiftable transforms are designed and implemented: a onedimensional tran...
PyramidBased Texture Analysis/Synthesis
, 1995
"... This paper describes a method for synthesizing images that match the texture appearanceof a given digitized sample. This synthesis is completely automatic and requires only the "target" texture as input. It allows generation of as much texture as desired so that any object can be covered. It can be ..."
Abstract

Cited by 385 (0 self)
 Add to MetaCart
This paper describes a method for synthesizing images that match the texture appearanceof a given digitized sample. This synthesis is completely automatic and requires only the "target" texture as input. It allows generation of as much texture as desired so that any object can be covered. It can be used to produce solid textures for creating textured 3d objects without the distortions inherent in texture mapping. It can also be used to synthesize texture mixtures, images that look a bit like each of several digitized samples. The approach is based on a model of human texture perception, and has potential to be a practically useful tool for graphics applications. 1 Introduction Computer renderings of objects with surface texture are more interesting and realistic than those without texture. Texture mapping [15] is a technique for adding the appearance of surface detail by wrapping or projecting a digitized texture image ontoa surface. Digitized textures can be obtained from a variety ...
Evaluation of Interest Point Detectors
, 2000
"... Many different lowlevel feature detectors exist and it is widely agreed that the evaluation of detectors is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information content. Repeatability rate evaluates the geometric stability under diff ..."
Abstract

Cited by 295 (7 self)
 Add to MetaCart
Many different lowlevel feature detectors exist and it is widely agreed that the evaluation of detectors is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information content. Repeatability rate evaluates the geometric stability under different transformations. Information content measures the distinctiveness of features. Different interest point detectors are compared using these two criteria. We determine which detector gives the best results and show that it satisfies the criteria well.
Recognition without Correspondence using Multidimensional Receptive Field Histograms
 International Journal of Computer Vision
, 2000
"... . The appearance of an object is composed of local structure. This local structure can be described and characterized by a vector of local features measured by local operators such as Gaussian derivatives or Gabor filters. This article presents a technique where appearances of objects are represente ..."
Abstract

Cited by 209 (19 self)
 Add to MetaCart
. The appearance of an object is composed of local structure. This local structure can be described and characterized by a vector of local features measured by local operators such as Gaussian derivatives or Gabor filters. This article presents a technique where appearances of objects are represented by the joint statistics of such local neighborhood operators. As such, this represents a new class of appearance based techniques for computer vision. Based on joint statistics, the paper develops techniques for the identification of multiple objects at arbitrary positions and orientations in a cluttered scene. Experiments show that these techniques can identify over 100 objects in the presence of major occlusions. Most remarkably, the techniques have low complexity and therefore run in realtime. 1. Introduction The paper proposes a framework for the statistical representation of the appearance of arbitrary 3D objects. This representation consists of a probability density function or jo...
Orientation Diffusions
 IEEE Trans. Image Processing
, 1998
"... Abstract—Diffusions are useful for image processing and computer vision because they provide a convenient way of smoothing noisy data, analyzing images at multiple scales, and enhancing discontinuities. A number of diffusions of image brightness have been defined and studied so far; they may be appl ..."
Abstract

Cited by 131 (0 self)
 Add to MetaCart
Abstract—Diffusions are useful for image processing and computer vision because they provide a convenient way of smoothing noisy data, analyzing images at multiple scales, and enhancing discontinuities. A number of diffusions of image brightness have been defined and studied so far; they may be applied to scalar and vectorvalued quantities that are naturally associated with intervals of either the real line, or other flat manifolds. Some quantities of interest in computer vision, and other areas of engineering that deal with images, are defined on curved manifolds; typical examples are orientation and hue that are defined on the circle. Generalizing brightness diffusions to orientation is not straightforward, especially in the case where a discrete implementation is sought. An example of what may go wrong is presented. A method is proposed to define diffusions of orientationlike quantities. First a definition in the continuum is discussed, then a discrete orientation diffusion is proposed. The behavior of such diffusions is explored both analytically and experimentally. It is shown how such orientation diffusions contain a nonlinearity that is reminiscent of edgeprocess and anisotropic diffusion. A number of open questions are proposed at the end. Index Terms—Orientation analysis, texture analysis, diffusions, scalespace.
Local scale control for edge detection and blur estimation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1998
"... Abstract—The standard approach to edge detection is based on a model of edges as large step changes in intensity. This approach fails to reliably detect and localize edges in natural images where blur scale and contrast can vary over a broad range. The main problem is that the appropriate spatial sc ..."
Abstract

Cited by 108 (10 self)
 Add to MetaCart
Abstract—The standard approach to edge detection is based on a model of edges as large step changes in intensity. This approach fails to reliably detect and localize edges in natural images where blur scale and contrast can vary over a broad range. The main problem is that the appropriate spatial scale for local estimation depends upon the local structure of the edge, and thus varies unpredictably over the image. Here we show that knowledge of sensor properties and operator norms can be exploited to define a unique, locally computable minimum reliable scale for local estimation at each point in the image. This method for local scale control is applied to the problem of detecting and localizing edges in images with shallow depth of field and shadows. We show that edges spanning a broad range of blur scales and contrasts can be recovered accurately by a single system with no input parameters other than the second moment of the sensor noise. A natural dividend of this approach is a measure of the thickness of contours which can be used to estimate focal and penumbral blur. Local scale control is shown to be important for the estimation of blur in complex images, where the potential for interference between nearby edges of very different blur scale requires that estimates be made at the minimum reliable scale.
Efficient Rerendering of Naturally Illuminated Environments
 IN FIFTH EUROGRAPHICS WORKSHOP ON RENDERING
, 1994
"... We present a method for the efficient rerendering of a scene under a directional illuminant at an arbitrary orientation. We take advantage of the linearity of the rendering operator with respect to illumination for a fixed scene and camera geometry. Rerendering is accomplished via linear combinati ..."
Abstract

Cited by 89 (5 self)
 Add to MetaCart
We present a method for the efficient rerendering of a scene under a directional illuminant at an arbitrary orientation. We take advantage of the linearity of the rendering operator with respect to illumination for a fixed scene and camera geometry. Rerendering is accomplished via linear combination of a set of prerendered "basis" images. The theory of steerable functions provides the machinery to derive an appropriate set of basis images. We demonstrate the technique on both simple and complex scenes illuminated by an approximation to natural skylight. We show rerendering simulations under conditions of varying sun position and cloudiness.
SteerableScalable Kernels for Edge Detection and Junction Analysis
 Image and Vision Computing
, 1992
"... Families of kernels that are useful in a variety of early vision algorithms may be obtained by rotating and scaling in a continuum a `template' kernel. These multiscale multiorientation family may be approximated by linear interpolation of a discrete finite set of appropriate `basis' kernels. A sc ..."
Abstract

Cited by 80 (1 self)
 Add to MetaCart
Families of kernels that are useful in a variety of early vision algorithms may be obtained by rotating and scaling in a continuum a `template' kernel. These multiscale multiorientation family may be approximated by linear interpolation of a discrete finite set of appropriate `basis' kernels. A scheme for generating such a basis together with the appropriate interpolation weights is described. Unlike previous schemes by Perona, and Simoncelli et al. it is guaranteed to generate the most parsimonious one. Additionally, it is shown how to exploit two symmetries in edgedetection kernels for reducing storage and computational costs and generating simultaneously endstop and junctiontuned filters for free.
Distributed Representation and Analysis of Visual Motion
, 1993
"... This thesis describes some new approaches to the representation and analysis of visual motion, as perceived by a biological or machine visual system. We begin by discussing the computation of image motion fields, the projection of motion in the threedimensional world onto the twodimensional image ..."
Abstract

Cited by 61 (4 self)
 Add to MetaCart
This thesis describes some new approaches to the representation and analysis of visual motion, as perceived by a biological or machine visual system. We begin by discussing the computation of image motion fields, the projection of motion in the threedimensional world onto the twodimensional image plane. This computation is notoriously difficult, and there are a wide variety of approaches that have been developed for use in image processing, machine vision, and biological modeling. We show that a large number of the basic techniques are quite similar in nature, differing primarily in conceptual motivation, and that they each fail to handle a set of situations that occur commonly in natural scenery. The central theme of the thesis is that the failure of these algorithms is due primarily to the use of vector fields as a representation for visual motion. We argue that the translational vector field representation is inherently impoverished and errorprone. Furthermore, there is evidence that a ...