Results 1  10
of
46
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 797 (12 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
A Fast Multilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems
 Experience
, 1994
"... Unstructured meshes are used in many largescale scientific and engineering problems, including finitevolume methods for computational fluid dynamics and finiteelement methods for structural analysis. If unstructured problems such as these are to be solved on distributedmemory parallel computers, ..."
Abstract

Cited by 284 (7 self)
 Add to MetaCart
Unstructured meshes are used in many largescale scientific and engineering problems, including finitevolume methods for computational fluid dynamics and finiteelement methods for structural analysis. If unstructured problems such as these are to be solved on distributedmemory parallel computers, their data structures must be partitioned and distributed across processors; if they are to be solved efficiently, the partitioning must maximize load balance and minimize interprocessor communication. Recently the recursive spectral bisection method (RSB) has been shown to be very effective for such partitioning problems compared to alternative methods. Unfortunately, RSB in its simplest form is rather expensive. In this report we shall describe a multilevel implementation of RSB that can attain about an orderofmagnitude improvement in run time on typical examples. Keywords: graph partitioning, domain decomposition, MIMD machines, multilevel algorithm, spectral bisection, sp...
METIS  Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 2.0
, 1995
"... this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used ..."
Abstract

Cited by 122 (5 self)
 Add to MetaCart
this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used by METIS. Section 6 describes the standalone library that implements the various algorithms implemented in METIS. Section 7 describes the system requirements for the METIS package. Appendix A describes and compares various graph partitioning algorithms that are extensively used.
Analysis of multilevel graph partitioning
, 1995
"... Recently, a number of researchers have investigated a class of algorithms that are based on multilevel graph partitioning that have moderate computational complexity, and provide excellent graph partitions. However, there exists little theoretical analysis that could explain the ability of multileve ..."
Abstract

Cited by 90 (14 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of algorithms that are based on multilevel graph partitioning that have moderate computational complexity, and provide excellent graph partitions. However, there exists little theoretical analysis that could explain the ability of multilevel algorithms to produce good partitions. In this paper we present such an analysis. We show under certain reasonable assumptions that even if no refinement is used in the uncoarsening phase, a good bisection of the coarser graph is worse than a good bisection of the finer graph by at most a small factor. We also show that the size of a good vertexseparator of the coarse graph projected to the finer graph (without performing refinement in the uncoarsening phase) is higher than the size of a good vertexseparator of the finer graph by at most a small factor.
Graph partitioning for high performance scientific simulations. Computing Reviews 45(2
, 2004
"... ..."
Combinatorial preconditioners for sparse, symmetric, diagonally dominant linear systems
, 1996
"... ..."
Runtime support and compilation methods for userspecified irregular data distributions
 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
, 1995
"... This paper describes two new ideas by which a High Performance Fortran compiler can deal with irregular computations effectively. The first mechanism invokes a user specified mapping procedure via a set of proposed compiler directives. The directives allow use of program arrays to describe graph c ..."
Abstract

Cited by 55 (11 self)
 Add to MetaCart
This paper describes two new ideas by which a High Performance Fortran compiler can deal with irregular computations effectively. The first mechanism invokes a user specified mapping procedure via a set of proposed compiler directives. The directives allow use of program arrays to describe graph connectivity, spatial location of array elements, and computational load. The second mechanism is a conservative method for compiling irregular loops in which dependence arises only due to reduction operations. This mechanism in many cases enables a compiler to recognize that it is possible to reuse previously computed information from inspectors (e.g., communication schedules, loop iteration partitions, and information that associates offprocessor data copies with onprocessor buffer locations). This paper also presents performance results for these mechanisms from a Fortran 90D compiler implementation.
Runtime and compiletime support for adaptive irregular problems
 SUPERCOMPUTINGâ€™94
, 1994
"... In adaptive irregular problems the data arrays are accessed via indirection arrays, and data access patterns change during computation. Implementing such problems on distributed memory machines requires support for dynamic data partitioning, efficient preprocessing and fast data migration. This rese ..."
Abstract

Cited by 53 (9 self)
 Add to MetaCart
In adaptive irregular problems the data arrays are accessed via indirection arrays, and data access patterns change during computation. Implementing such problems on distributed memory machines requires support for dynamic data partitioning, efficient preprocessing and fast data migration. This research presents efficient runtime primitives for such problems. This new set of primitives is part of the CHAOS library. It subsumes the previous PARTI library which targeted only static irregular problems. To demonstrate the efficacy of the runtime support, two real adaptive irregular applications have been parallelized using CHAOS primitives: a molecular dynamics code (CHARMM) and a particleincell code (DSMC). The paper also proposes extensions to Fortran D which can allow compilers to generate more efficient code for adaptive problems. These language extensions have been implemented in the Syracuse Fortran 90D/HPF prototype compiler. The performance of the compiler parallelized codes is compared with the hand parallelized versions.
Runtime Compilation Techniques for Data Partitioning and Communication Schedule Reuse
 PROCEEDINGS OF THE 1993 ACM/IEEE CONFERENCE ON SUPERCOMPUTING
, 1993
"... In this paper, we describe two new ideas by which HPF compiler can deal with irregular computations effectively. The first mechanism invokes a user specified mapping procedure via a set of compiler directives. The directives allow the user to use progmm arrays to describe graph connectivity, spatial ..."
Abstract

Cited by 44 (2 self)
 Add to MetaCart
In this paper, we describe two new ideas by which HPF compiler can deal with irregular computations effectively. The first mechanism invokes a user specified mapping procedure via a set of compiler directives. The directives allow the user to use progmm arrays to describe graph connectivity, spatial location of army elements and computational load. The second is a simple conservative method that in many casea enables a compiler to recognize that it is possible to reuse previously computed results from inspectors (e.g. communication schedules, loop iteration partitions, information that associates offprocessor data copies with onprocessor buffer locations). We present performance results for these mechanisms from a Fortran 90D compiler implementation.