Results 1  10
of
32
Notes on Polynomially Bounded Arithmetic
"... We characterize the collapse of Buss' bounded arithmetic in terms of the provable collapse of the polynomial time hierarchy. We include also some general modeltheoretical investigations on fragments of bounded arithmetic. Contents 0 Introduction and motivation. 1 1 Preliminaries. 3 1.1 The polyno ..."
Abstract

Cited by 58 (1 self)
 Add to MetaCart
We characterize the collapse of Buss' bounded arithmetic in terms of the provable collapse of the polynomial time hierarchy. We include also some general modeltheoretical investigations on fragments of bounded arithmetic. Contents 0 Introduction and motivation. 1 1 Preliminaries. 3 1.1 The polynomially bounded hierarchy. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.2 The axioms of secondorder bounded arithmetic. : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 1.3 Rudimentary functions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 1.4 Other fragments. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 1.5 Polynomial time computable functions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1.6 Relations among fragments. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 1.7 Relations with Buss' bounded arithmetic. : : : :...
On the strength of Ramsey’s Theorem for pairs
 Journal of Symbolic Logic
, 2001
"... Abstract. We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (r ..."
Abstract

Cited by 41 (9 self)
 Add to MetaCart
Abstract. We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (recursive) k–coloring of the n–element sets of natural numbers, there is an infinite homogeneous set X with X ′ ′ ≤T 0 (n). Let I�n and B�n denote the �n induction and bounding schemes, respectively. Adapting the case n = 2 of the above result (where X is low2) to models is conservative of arithmetic enables us to show that RCA0 + I �2 + RT2 2 over RCA0 + I �2 for �1 1 statements and that RCA0 + I �3 + RT2 < ∞ is �1 1conservative over RCA0 + I �3. It follows that RCA0 + RT2 2 does not imply B �3. In contrast, J. Hirst showed that RCA0 + RT2 < ∞ does imply B �3, and we include a proof of a slightly strengthened version of this result. It follows that RT2 < ∞ is strictly stronger than RT2 2 over RC A0. 1.
Partial realizations of Hilbert’s program
 Journal of Symbolic Logic
, 1988
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract

Cited by 38 (8 self)
 Add to MetaCart
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The
Totality in Applicative Theories
 ANNALS OF PURE AND APPLIED LOGIC
, 1995
"... In this paper we study applicative theories of operations and numbers with (and without) the nonconstructive minimum operator in the context of a total application operation. We determine the prooftheoretic strength of such theories by relating them to wellknown systems like Peano Arithmetic ..."
Abstract

Cited by 21 (12 self)
 Add to MetaCart
In this paper we study applicative theories of operations and numbers with (and without) the nonconstructive minimum operator in the context of a total application operation. We determine the prooftheoretic strength of such theories by relating them to wellknown systems like Peano Arithmetic PA and the system (\Pi 0 1 CA) !"0 of second order arithmetic. Essential use will be made of socalled fixedpoint theories with ordinals, certain infinitary term models and Church Rosser properties.
A New Method for Establishing Conservativity of Classical Systems Over Their Intuitionistic Version
"... this paper we present such a method. Applied to I \Sigma ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
this paper we present such a method. Applied to I \Sigma
Elimination of Skolem functions for monotone formulas in analysis
 ARCHIVE FOR MATHEMATICAL LOGIC
"... ..."
Theories With SelfApplication and Computational Complexity
 Information and Computation
, 2002
"... Applicative theories form the basis of Feferman's systems of explicit mathematics, which have been introduced in the early seventies. In an applicative universe, all individuals may be thought of as operations, which can freely be applied to each other: selfapplication is meaningful, but not ne ..."
Abstract

Cited by 12 (9 self)
 Add to MetaCart
Applicative theories form the basis of Feferman's systems of explicit mathematics, which have been introduced in the early seventies. In an applicative universe, all individuals may be thought of as operations, which can freely be applied to each other: selfapplication is meaningful, but not necessarily total. It has turned out that theories with selfapplication provide a natural setting for studying notions of abstract computability, especially from a prooftheoretic perspective.
Uniform Heyting arithmetic
 Annals Pure Applied Logic
, 2005
"... Abstract. We present an extension of Heyting Arithmetic in finite types called Uniform Heyting Arithmetic (HA u) that allows for the extraction of optimized programs from constructive and classical proofs. The system HA u has two sorts of firstorder quantifiers: ordinary quantifiers governed by the ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Abstract. We present an extension of Heyting Arithmetic in finite types called Uniform Heyting Arithmetic (HA u) that allows for the extraction of optimized programs from constructive and classical proofs. The system HA u has two sorts of firstorder quantifiers: ordinary quantifiers governed by the usual rules, and uniform quantifiers subject to stronger variable conditions expressing roughly that the quantified object is not computationally used in the proof. We combine a Kripkestyle Friedman/Dragalin translation which is inspired by work of Coquand and Hofmann and a variant of the refined Atranslation due to Buchholz, Schwichtenberg and the author to extract programs from a rather large class of classical firstorder proofs while keeping explicit control over the levels of recursion and the decision procedures for predicates used in the extracted program. §1. Introduction. According to the BrouwerHeytingKolmogorov interpretation of constructive logic a proof is a construction providing evidence for the proven formula [20]. Viewing this interpretation from a dataoriented perspective one arrives at the socalled proofsasprograms paradigm associating a constructive proof with a program ‘realizing ’ the proven formula. This paradigm has been
On the Arithmetical Content of Restricted Forms of Comprehension, Choice and General Uniform Boundedness
 PURE AND APPLIED LOGIC
, 1997
"... In this paper the numerical strength of fragments of arithmetical comprehension, choice and general uniform boundedness is studied systematically. These principles are investigated relative to base systems T n in all finite types which are suited to formalize substantial parts of analysis but ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
In this paper the numerical strength of fragments of arithmetical comprehension, choice and general uniform boundedness is studied systematically. These principles are investigated relative to base systems T n in all finite types which are suited to formalize substantial parts of analysis but nevertheless have provably recursive function(al)s of low growth. We reduce the use of instances of these principles in T n proofs of a large class of formulas to the use of instances of certain arithmetical principles thereby determining faithfully the arithmetical content of the former. This is achieved using the method of elimination of Skolem functions for monotone formulas which was introduced by the author in a previous paper. As