Results 1 
6 of
6
The many forms of hypercomputation
 Applied Mathematics and Computation
, 2006
"... This paper surveys a wide range of proposed hypermachines, examining the resources that they require and the capabilities that they possess. ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
This paper surveys a wide range of proposed hypermachines, examining the resources that they require and the capabilities that they possess.
Abstract Definability as hypercomputational effect q
"... The classical simulation of physical processes using standard models of computation is fraught with problems. On the other hand, attempts at modelling realworld computation with the aim of isolating its hypercomputational content have struggled to convince. We argue that a better basic understandin ..."
Abstract
 Add to MetaCart
The classical simulation of physical processes using standard models of computation is fraught with problems. On the other hand, attempts at modelling realworld computation with the aim of isolating its hypercomputational content have struggled to convince. We argue that a better basic understanding can be achieved through computability theoretic deconstruction of those physical phenomena most resistant to classical simulation. From this we may be able to better assess whether the hypercomputational enterprise is proleptic computer science, or of mainly philosophical interest.
Abstract Embedding infinitely parallel computation in Newtonian kinematics
"... First, we reflect on computing sets and functions using measurements from experiments with a class of physical systems. We call this experimental computation. We outline a programme to analyse theoretically experimental computation in which a central problem is: Given a physical theory T, explore an ..."
Abstract
 Add to MetaCart
First, we reflect on computing sets and functions using measurements from experiments with a class of physical systems. We call this experimental computation. We outline a programme to analyse theoretically experimental computation in which a central problem is: Given a physical theory T, explore and classify the computational models that can be embedded in, and abstracted from, the physical systems specified by the physical theory T. We consider the embedding of arbitrary sets, functions, programs, and computers into designs for systems that can be specified in subtheories or fragments T of Newtonian kinematics in order to explore some of the physical assumptions of T that allows its systems to qualify as hypercomputers, i.e. physical models that compute sets and functions that cannot be computed in classical computability theory. In designing systems we work strictly within the chosen theory T and do not concern ourself with whether or not T is valid of the world today. We are interested in exploring the subtheory from a computational point of view and especially in restrictions on the assumptions of T that allow us to return from hypercomputation to classical computation. Secondly, we give a construction of an infinitely parallel machine that can decide all the arithmetical sets of natural numbers. We embed this hypercomputer as system in 3dimensions obeying the laws of a fragment of Newtonian kinematics. In particular, the example shows that communication allowable in Newtonian kinematics is especially powerful. We conclude with further reflections and open problems.
Embedding infinitely parallel computation in Newtonian kinematics
"... First, we reflect on computing sets and functions using measurements from experiments with a class of physical systems. We call this experimental computation. We outline a programme to analyse theoretically experimental computation in which a central problem is: Given a physical theory T, explore an ..."
Abstract
 Add to MetaCart
First, we reflect on computing sets and functions using measurements from experiments with a class of physical systems. We call this experimental computation. We outline a programme to analyse theoretically experimental computation in which a central problem is: Given a physical theory T, explore and classify the computational models that can be embedded in, and abstracted from, the physical systems specified by the physical theory T. We consider the embedding arbitrary sets, functions, programs, and computers into designs for systems that can be specified in subtheories or fragments T of Newtonian kinematics in order to explore some of the physical assumptions of T that allowed its systems to qualify as hypercomputers, i.e., physical models that compute sets and functions that cannot be computed in classical computability theory. In designing systems we work strictly within the chosen theory T and do not concern ourself with whether or not T is valid of the world today. We are interested in exploring the subtheory from a computational point of view and especially in restrictions on the assumptions of T that allow us to return from hypercomputation to classical computation. Secondly, we give a construction of an infinitely parallel machine that can decide all the arithmetical sets of natural numbers. We embed this hypercomputer as system in 3dimensions obeying the laws of a fragment of Newtonian kinematics. In particular, the example shows that communication allowable in Newtonian kinematics is especially powerful. We conclude with further reflections and open problems.
12345efghi UNIVERSITY OF WALES SWANSEA REPORT SERIES
"... Newtonian mechanics and infinitely parallel computation by ..."