Results 1  10
of
67
Comparing community structure identification
 Journal of Statistical Mechanics: Theory and Experiment
, 2005
"... ..."
(Show Context)
Nunes Amaral. Functional cartography of complex metabolic networks
 Nature
, 2005
"... Highthroughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enab ..."
Abstract

Cited by 153 (3 self)
 Add to MetaCart
Highthroughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enables us to extract and display information contained in complex networks 1,2,3. Specifically, we demonstrate that one can (i) find functional modules 4,5 in complex networks, and (ii) classify nodes into universal roles according to their pattern of intra and intermodule connections. The method thus yields a “cartographic representation ” of complex networks. Metabolic networks 6,7,8 are among the most challenging biological networks and, arguably, the ones with more potential for immediate applicability 9. We use our method to analyze the metabolic networks of twelve organisms from three different superkingdoms. We find that, typically, 80 % of the nodes are only connected to other nodes within their respective modules, and that nodes with different roles are affected by different evolutionary constraints and pressures. Remarkably, we
Statistical properties of community structure in large social and information networks
"... A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structur ..."
Abstract

Cited by 134 (10 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales, and we study over 70 large sparse realworld networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large realworld networks than has been appreciated previously. Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually “blend in ” with the rest of the network and thus become less “communitylike.” This behavior is not explained, even at a qualitative level, by any of the commonlyused network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are wellembeddable in a lowdimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative “forest fire” burning process, is able to produce graphs exhibiting a network community structure similar to our observations.
Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract

Cited by 85 (7 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large realworld networks, ranging from traditional and online social networks, to technological and information networks and
On Modularity Clustering
, 2008
"... Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings wit ..."
Abstract

Cited by 71 (12 self)
 Add to MetaCart
Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomerative approach.
Classes of complex networks defined by roletorole connectivity profiles
, 2007
"... In physical, biological, technological and social systems, interactions between units give rise to intricate networks. These—typically nontrivial—structures, in turn, critically affect the dynamics and properties of the system. The focus of most current research on complex networks is, still, on gl ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
In physical, biological, technological and social systems, interactions between units give rise to intricate networks. These—typically nontrivial—structures, in turn, critically affect the dynamics and properties of the system. The focus of most current research on complex networks is, still, on global network properties. A caveat of this approach is that the relevance of global properties hinges on the premise that networks are homogeneous, whereas most realworld networks have a markedly modular structure. Here, we report that networks with different functions, including the Internet, metabolic, air transportation and protein interaction networks, have distinct patterns of connections among nodes with different roles, and that, as a consequence, complex networks can be classified into two distinct functional classes on the basis of their link type frequency. Importantly, we demonstrate that these structural features cannot be captured by means of often studied global properties.
Identifying network communities with a high resolution
 Physical Review E
"... Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the opti ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
(Show Context)
Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a quantity called modularity (Q). However, the problem of modularity optimization is NPhard, and the existing approaches often suffer from prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit, i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm, Qcut, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that Qcut can find higher modularities and is more scalable than the existing algorithms. Furthermore, using Qcut as an essential component, we propose a recursive algorithm, HQcut, to solve the resolution limit problem. We show that HQcut can successfully detect communities at a much finer scale and with a higher accuracy than the existing algorithms. Finally, we apply Qcut and HQcut to study a proteinprotein interaction network, and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetectable.
Dynamics of Large Networks
, 2008
"... A basic premise behind the study of large networks is that interaction leads to complex collective behavior. In our work we found very interesting and counterintuitive patterns for time evolving networks, which change some of the basic assumptions that were made in the past. We then develop models ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
A basic premise behind the study of large networks is that interaction leads to complex collective behavior. In our work we found very interesting and counterintuitive patterns for time evolving networks, which change some of the basic assumptions that were made in the past. We then develop models that explain processes which govern the network evolution, fit such models to real networks, and use them to generate realistic graphs or give formal explanations about their properties. In addition, our work has a wide range of applications: it can help us spot anomalous graphs and outliers, forecast future graph structure and run simulations of network evolution. Another important aspect of our research is the study of “local ” patterns and structures of propagation in networks. We aim to identify building blocks of the networks and find the patterns of influence that these blocks have on information or virus propagation over the network. Our recent work included the study of the spread of influence in a large persontoperson
ModularityMaximizing Graph Communities via Mathematical Programming
"... In many networks, it is of great interest to identify communities, unusually densely knit groups of individuals. Such communities often shed light on the function of the networks or underlying properties of the individuals. Recently, Newman suggested modularity as a natural measure of the quality ..."
Abstract

Cited by 22 (1 self)
 Add to MetaCart
In many networks, it is of great interest to identify communities, unusually densely knit groups of individuals. Such communities often shed light on the function of the networks or underlying properties of the individuals. Recently, Newman suggested modularity as a natural measure of the quality of a network partitioning into communities. Since then, various algorithms have been proposed for (approximately) maximizing the modularity of the partitioning determined. In this paper, we introduce the technique of rounding mathematical programs to the problem of modularity maximization, presenting two novel algorithms. More specifically, the algorithms round solutions to linear and vector programs. Importantly, the linear programing algorithm comes with an a posteriori approximation guarantee: by comparing the solution quality to the fractional solution of the linear program, a bound on the available “room for improvement ” can be obtained. The vector programming algorithm provides a similar bound for the best partition into two communities. We evaluate both algorithms using experiments on several standard test cases for network partitioning algorithms, and find that they perform comparably or better than past algorithms, while being more efficient than exhaustive techniques.
On finding graph clusterings with maximum modularity
 IN PROCEEDINGS OF THE 33RD INTERNATIONAL WORKSHOP ON GRAPHTHEORETIC CONCEPTS IN COMPUTER SCIENCE. LECTURE NOTES IN COMPUTER SCIENCE
, 2007
"... Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings wi ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomaration approach.