Results 1 
2 of
2
Statistical Foundations for Default Reasoning
, 1993
"... We describe a new approach to default reasoning, based on a principle of indifference among possible worlds. We interpret default rules as extreme statistical statements, thus obtaining a knowledge base KB comprised of statistical and firstorder statements. We then assign equal probability to all w ..."
Abstract

Cited by 45 (8 self)
 Add to MetaCart
We describe a new approach to default reasoning, based on a principle of indifference among possible worlds. We interpret default rules as extreme statistical statements, thus obtaining a knowledge base KB comprised of statistical and firstorder statements. We then assign equal probability to all worlds consistent with KB in order to assign a degree of belief to a statement '. The degree of belief can be used to decide whether to defeasibly conclude '. Various natural patterns of reasoning, such as a preference for more specific defaults, indifference to irrelevant information, and the ability to combine independent pieces of evidence, turn out to follow naturally from this technique. Furthermore, our approach is not restricted to default reasoning; it supports a spectrum of reasoning, from quantitative to qualitative. It is also related to other systems for default reasoning. In particular, we show that the work of [ Goldszmidt et al., 1990 ] , which applies maximum entropy ideas t...
A Logic for Default Reasoning About Probabilities
, 1998
"... A logic is defined that allows to express information about statistical probabilities and about degrees of belief in specific propositions. By interpreting the two types of probabilities in one common probability space, the semantics given are well suited to model the in uence of statistical informa ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
A logic is defined that allows to express information about statistical probabilities and about degrees of belief in specific propositions. By interpreting the two types of probabilities in one common probability space, the semantics given are well suited to model the in uence of statistical information on the formation of subjective beliefs. Cross entropy minimization is a key element in these semantics, the use of which is justified by showing that the resulting logic exhibits some very reasonable properties.